4.万有引力理论的成就
[学习目标] 1.了解万有引力定律在天文学上的重要应用. 2.掌握计算天体的质量和密度的方法.(重点) 3.掌握解决天体运动问题的基本思路.(重点、难点)
一、计算天体的质量 1.地球质量的计算
(1)依据:地球表面的物体,若不考虑地球自转,物体的重力等于地球对物Mm
体的万有引力,即mg=G2.
R
gR2
(2)结论:M=G,只要知道g、R的值,就可计算出地球的质量. 2.太阳质量的计算
(1)依据:质量为m的行星绕太阳做匀速圆周运动时,行星与太阳间的万有Mm4π2mr引力充当向心力,即G2=2.
rT4π2r3
(2)结论:M=,只要知道行星绕太阳运动的周期T和半径r,就可以计
GT2算出太阳的质量.
3.其他行星质量的计算
Mm4π2mr(1)依据:绕行星做匀速圆周运动的卫星,同样满足G2=2(M为行星
rT质量,m为卫星质量).
4π2r3
(2)结论:M=,只要知道卫星绕行星运动的周期T和半径r,就可以计
GT2算出行星的质量.
二、发现未知天体 1.海王星的发现
英国剑桥大学的学生亚当斯和法国年轻的天文学家勒维耶根据天王星的观测资料,利用万有引力定律计算出天王星外“新”行星的轨道.1846年9月23
日,德国的伽勒在勒维耶预言的位置附近发现了这颗行星——海王星.
2.其他天体的发现
近100年来,人们在海王星的轨道之外又发现了冥王星、阋神星等几个较大的天体.
1.思考判断(正确的打“√”,错误的打“×”) (1)地球表面的物体,重力就是物体所受的万有引力. (2)绕行星匀速转动的卫星,万有引力提供向心力. (3)利用地球绕太阳转动,可求地球的质量.
(×) (√) (×)
(4)海王星、冥王星的发现表明了万有引力理论在太阳系内的正确性. (√) (5)科学家在观测双星系统时,同样可以用万有引力定律来分析. (6)冥王星被称为“笔尖下发现的行星”. 2.下列说法正确的是( )
A.海王星是人们直接应用万有引力定律计算出轨道而发现的 B.天王星是人们依据万有引力定律计算出轨道而发现的 C.海王星是人们经过长期的太空观测而发现的
D.天王星的运行轨道与由万有引力定律计算的轨道存在偏差,其原因是天王星受到轨道外的行星的引力作用,由此人们发现了海王星
D [由行星的发现历史可知,天王星并不是根据万有引力定律计算出轨道而发现的;海王星不是通过观测发现,也不是直接由万有引力定律计算出轨道而发现的,而是人们发现天王星的实际轨道与理论轨道存在偏差,然后运用万有引力定律计算出“新”星的轨道,从而发现了海王星.由此可知,A、B、C错误,D正确.]
3.“嫦娥二号”是我国月球探测第二期工程的先导星.若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期T,已知引力常量4
为G,半径为R的球体体积公式V=πR3,则可估算月球的( )
3
A.密度 C.半径
B.质量 D.自转周期
(√) (×)
Mm4π2
A [由万有引力提供向心力有G2=m2r,由于在月球表面轨道有r=R,
rT
43π
由球体体积公式V=πR3,联立解得月球的密度ρ=2,故选A.]
3GT
计算天体的质量和密度 1.天体质量的计算 (1)重力加速度法
若已知天体(如地球)的半径R及其表面的重力加速度g,根据在天Mm
体表面上物体的重力近似等于天体对物体的引力,得mg=G2,解
R
gR2
得天体的质量为M=G,g、R是天体自身的参量,所以该方法俗称“自力更生法”.
(2)环绕法
借助环绕中心天体做圆周运动的行星(或卫星)计算中心天体的质量,俗称“借助外援法”.常见的情况如下:
万有引力提供向心力 v2MmG2=mr rMmG2=mrω2 rMm4π2G2=mr2 rT2.天体密度的计算 若天体的半径为R,则天体的密度ρ=3πr3. GT2R3特殊情况:当卫星环绕天体表面运动时,卫星的轨道半径r可认为等于天体半径R,则ρ=
中心天体的质量 rv2M=G r3ω2M=G 4π2r3M= GT2说明 r为行星(或卫星)的轨道半径,v、ω、T为行星(或卫星)的线速度、角速度和周期 M4πR3
4π2r3
,将M=代入上式可得ρ=
GT23
3π
. GT2
【例1】 (多选)若宇航员在月球表面附近自高h处以初速度v0水平抛出一个小球,测出小球的水平射程为L.已知月球半径为R,万有引力常量为G.则下列说法正确的是( )
2hv20A.月球表面的重力加速度g月=2
L2hR2v20B.月球的质量m月=2 GLC.月球的自转周期T=
2πR
v0
3hv20
D.月球的平均密度ρ=
2πGL22hv01
AB [根据平抛运动规律,L=v0t,h=g月t2,联立解得g月=2,选项A
2Lmm月2hR2v20
正确;由mg月=G2解得m月=根据题目条件无法求出2,选项B正确;RGLm月3hv20月球的自转周期,选项C错误;月球的平均密度ρ==,选项D错
432πGL2RπR3误.]
求解天体质量和密度时的两种常见误区
4π2r3
(1)根据轨道半径r和运行周期T,求得M=是中心天体的质量,而不GT2是行星(或卫星)的质量.
(2)混淆或乱用天体半径与轨道半径,为了正确并清楚地运用,应一开始就养成良好的习惯,比如通常情况下天体半径用R表示,轨道半径用r表示,这3πr3
样就可以避免如ρ=23误约分;只有卫星在天体表面做匀速圆周运动时,如GTR近地卫星,轨道半径r才可以认为等于天体半径R.
1.已知地球和月球半径的比值为4,地球和月球表面重力加速度的比值为6,则地球和月球密度的比值为( )
2
23
A. B. C.4 D.6
32
B [设月球的半径为R0,地球的半径为R,月球表面的重力加速度为g0,Mm
地球表面的重力加速度为g,在地球表面,重力等于万有引力,故mg=G2,
RgR2GgR2M3g3g0解得M=G,故密度ρ=V==.同理,月球的密度ρ0=,故地
434πGR4πGR0πR3ρgR013
球和月球的密度之比==6×=,B正确.]
ρ0g0R42
天体运动的分析和计算 1.解决天体运动问题的基本思路 一般行星或卫星的运动可看成匀速圆周运动,所需要的向心力都由中心天体Mm
对它的万有引力提供,所以研究天体时可建立基本关系式:G2=ma,式中a
R是向心加速度.
2.四个重要结论 项目 v与r的关系 ω与r的关系 T与r的关系 a与r的关系 推导式 v2MmG2=mr rGMm22=mrω r关系式 v=GMr GM r3r3GM GM r2结论 r越大,v越小 ω=r越大,ω越小 2Mm2πG2=mrT rT=2πr越大,T越大 GMm=ma r2a=r越大,a越小 【例2】 有的天文学家倾向于把太阳系外较小的天体叫作“矮行星”,而另外一些人把它们叫作“小行星”,谷神星就是小行星之一.现有两个这样的天体,它们的质量分别为m1和m2,绕太阳运行的轨道半径分别是r1和r2,求:
(1)它们与太阳间的万有引力之比;
(2)它们的公转周期之比.
[解析] (1)设太阳质量为M,由万有引力定律得,两天体与太阳间的万有引Mm1G22
r1F1m1r2力之比==2.
F2Mm2m2r1
G2r2
(2)两天体绕太阳的运动可看成匀速圆周运动,向心力由万有引力提供,则
2
Mm2π
有G2=mTr,
r
所以,天体绕太阳运动的周期 T=2πr3GM,
则两天体绕太阳的公转周期之比 T1=T2
r31. r32
3r13 r2
2
m1r2[答案] (1)2 (2)m2r1
上例中,若r1>r2,则两行星的运行的角速度ω1、ω2和线速度v1、v2的关系怎样?
提示:ω1<ω2,v1<v2.
2.设土星绕太阳的运动为匀速圆周运动,若测得土星到太阳的距离为R,土星绕太阳运动的周期为T,万有引力常量G已知,根据这些数据,不能求出的量有( )
A.土星线速度的大小 C.土星的质量
B.土星加速度的大小 D.太阳的质量
2πR4π2
C [根据已知数据可求:土星的线速度大小v=T、土星的加速度a=2T4π2R3
R、太阳的质量M=,无法求土星的质量,所以选C.]
GT2
宇宙双星问题
如图所示,宇宙中两个靠得比较近的天体称为双星,它们绕其连线上的某固定点做匀速圆周运动.双星具有以下特点:
(1)由于双星和该固定点总保持三点共线,所以双星做匀速圆周运动的角速度和周期分别相同.
(2)由于每颗星的向心力都是由双星间相互作用的万有引力提供的,因此大小必然相等.
(3)轨道半径与质量的关系
由F=mrω2和L=r1+r2,可得r1=
m2m1r1m2L,r2=L,则=. r2m1m1+m2m1+m2
【例3】 (多选)2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距400 km,绕二者连线上的某点每秒转动12圈.将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星
A.质量之积 C.速率之和
B.质量之和
D.各自的自转角速度
BC [由题意可知,合并前两中子星绕连线上某点每秒转动12圈,则两中子星的周期相等,且均为T=
12π
s,两中子星的角速度均为ω=T,两中子星构12
成了双星模型,假设两中子星的质量分别为m1、m2,轨道半径分别为r1、r2,m1m2m1m2速率分别为v1、v2,则有:G2=m1ω2r1、G2=m2ω2r2,又r1+r2=L=400
LLω2L3
km,解得m1+m2=G,A错误,B正确;又由v1=ωr1、v2=ωr2,则v1+v2=ω(r1+r2)=ωL,C正确;由题中的条件不能求解两中子星自转的角速度,D错误.]
3.(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T,两星到某一共同圆心的距离分别为R1和R2,那么,双星系统中两颗恒星的质量关系描述正确的是( )
A.这两颗恒星的质量必定相等
4π2R1+R23
B.这两颗恒星的质量之和为 GT2C.这两颗恒星的质量之比为m1∶m2=R2∶R1 4π2R1R1+R22
D.必有一颗恒星的质量为 GT2Gm1m24π2
BCD [对于两星有共同的周期T,由牛顿第二定律得=m12R1
TR1+R224π2
=m22R2,所以两星的质量之比m1∶m2=R2∶R1,C正确;由上式可得m1=
T4π2R2R1+R224π2R1R1+R224π2R1+R23
,m2=,D正确,A错误;m1+m2=,GT2GT2GT2B正确.]
课 堂 小 结 1.若不考虑地球自转的影响,地面上物体所受重力等于地球对物体的引力,即MmgR2mg=G2,可得地球质量M=G,该R公式同样适用于其他天体. 2.根据万有引力提供行星做圆周运动的向心力,只要测得某行星绕太阳运行的轨道半径r和周期T,就可得太阳的4π2r3质量为M=. GT2 知 识 脉 络
1.关于万有引力定律应用于天文学研究的历史事实,下列说法中正确的是
( )
A.天王星、海王星和冥王星,都是运用万有引力定律、经过大量计算后发现的
B.在18世纪已经发现的7颗行星中,人们发现第七颗行星——天王星的运动轨道总是同根据万有引力定律计算出来的结果有比较大的偏差,于是有人推测,在天王星轨道外还有一颗行星,是它的存在引起了上述偏差
C.第八颗行星,是牛顿运用自己发现的万有引力定律,经大量计算而发现的
D.冥王星是英国剑桥大学的学生亚当斯和勒维耶合作研究后共同发现的 B [由行星的发现历史可知,天王星并不是根据引力定律计算出轨道而发现的;海王星不是通过观测发现,也不是直接由万有引力定律计算出轨道而发现的,而是人们发现天王星的实际轨道与理论轨道存在偏差,然后运用万有引力定律计算出“新”星的轨道,从而发现了海王星.冥王星是克莱德·汤博发现的.由此可知,A、C、D错误,B正确.]
2.土星最大的卫星叫“泰坦”,每16天绕土星一周,其公转轨道半径约为1.2×106 km,已知引力常量G=6.67×10-11 N·m2/kg2,则土星的质量约为( )
A.5×1017 kg C.7×1033 kg
B.5×1026 kg D.4×1036 kg
B [卫星绕土星运动,土星对卫星的引力提供卫星做圆周运动的向心力.设GMm4π24π2R3土星质量为M,则有2=m2R,解得M=,带入计算可得:M=
RTGT24×3.142×1.2×106×103326
-112kg≈5×10 kg,故B正确,A、C、D错误.] 6.67×10×16×24×3 600
3.2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms.假设星体为质量均匀分布的球体,已知万有引力常量为6.67×10-11 N·m2/kg2.以周期T稳定自转的星体的密度最小值约为( )
A.5×109 kg/m3 C.5×1015 kg/m3
B.5×1012 kg/m3 D.5×1018 kg/m3
C [毫秒脉冲星稳定自转时由万有引力提供其表面物体做圆周运动的向心
Mm4π2R43π
力,根据G2=m2,M=ρ·πR3,得ρ=2,代入数据解得ρ≈5×1015 kg/m3,
RT3GTC正确.]
4.(多选)宇宙观测发现,在宇宙中甲、乙两个星体组成的双星系统,它们同时绕其连线上的某点O做匀速圆周运动,已知甲、乙的质量之比为7∶1,由此可知( )
A.甲、乙的线速度大小之比为7∶1 B.甲、乙的向心力大小之比为1∶1 C.甲、乙的运行轨道半径之比为1∶7 D.甲、乙的周期之比为1∶7
BC [作为双星系统,甲乙两星体周期是相等的,角速度也是相等的,它们之间的万有引力提供各自的向心力得:mω2r=Mω2R,甲乙质量比为7∶1,所以甲乙运行轨道半径之比为1∶7,根据v=ωr可知,线速度之比为1∶7,故A错误,C正确;它们之间的万有引力提供各自的向心力,则甲乙向心力大小相等,故B正确;甲乙两星体可视为双星系统,周期是相等的,故D错误.]
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务