Pattern formation in inclined layer convection
KarenE.Daniels,BrendanB.Plapp,andEberhardBodenschatz
LaboratoryofAtomicandSolidStatePhysics,CornellUniversity,Ithaca,NY14853-2501
(December21,1999)
Abstract
WereportexperimentsonthermallydrivenconvectioninaninclinedlayeroflargeaspectratioinafluidofPrandtlnumber
.Weobservedanumberofnew
nonlinear,mostlyspatio-temporallychaotic,states.Atsmallanglesofinclinationwefoundlongitudinalrolls,subharmonicoscillations,Busseoscillations,undulationchaos,andcrawlingrolls.Atlargerangles,inthevicinityofthetransitionfrombuoyancy-toshear-driveninstability,weobserveddriftingtransverserolls,localizedbursts,anddriftingbimodals.Foranglespastvertical,whenheatedfromabove,wefounddriftingtransverserollsandswitchingdiamondpanes.47.54.+r,47.27.Te,47.20.Bp,47.20.Ft,47.20.-k,05.45.Jn
TypesetusingREVTEX
1
Rayleigh-B´enardconvection(RBC)ofaverticalfluidlayerheatedfrombelowhaslongservedasaparadigmforpatternformingsystems[1,2].Variationsthatalterthesymmetries,suchasro-tationaroundaverticalaxis[3,4]andverticalvibrations[5]continuetoleadtoimportantinsights.Anothercase,ofparticularmeteorologicalandoceanographicinterest,isRBCofafluidlayerin-clinedwithrespecttogravity.Thissystemisnotonlywellsuitedforthestudyofbuoyancyandshearflowdriveninstabilities,butmayalsoserve,alongwithliquidcrystalconvection[6],asaparadigmforanisotropicpatternformingsystems.
AswithRBC,theonsetofinclinedlayerconvection(ILC)occurswhenthetemperaturedif-ference,
,acrossthelayerissufficientforconvectionrollstoform.Themaindifferencefrom
RBCisthat,inILC,thepatternlessbasestateischaracterizednotonlybyalineartemperaturegradientbutalsobyasymmetry-breakingshearflow.AsshowninFig.1,thecomponentofgrav-itytangentialtothefluidlayer,
,causesbuoyantfluidtoflowupalongthewarmplateanddown
alongthecoldplate.Forsmallanglesofinclination,buoyancydominatesovershearflow(large,
small),andtheprimaryinstabilityistolongitudinalrolls(LR)whoseaxesarealigned
withtheshearflowdirection[7].Withincreasing,buoyancyeffectsdecreaseandforbuoyancyisstabilizing.Aboveacriticalangle
(
)theshearflowcausesaprimaryinsta-
bilitytotransverserolls(TR)withroll-axesperpendiculartotheshearflow[7].Thefewpriorexperiments[8–10]onILCshowedreasonableagreementwiththelineartheory[7,11–13].TheseexperimentsalsodemonstratedthatLRareunstabletosomeformofundulations[8–10],inquali-tativeagreementwiththeory[12,13],butthequantitativedetailsofthestatewereinaccessibleduetoexperimentallimitations.
HerewereportthefirstexperimentalresultsonpatternformationinILCforlargeaspect-ratiosystemsinarangeofinclinationangles
,i.e.,fromhorizontal(heatedfrom
below)topastvertical(heatedfromabove).Wefoundmanyunpredictedstateswhenincreasing
abovethecriticaltemperaturedifference.For
weobservedlongitudinal
rolls,subharmonicoscillations,Busseoscillations,undulationchaos,andcrawlingrolls.Intheneighborhoodofthecodimensiontwopoint[11]forthermalandsheardriveninstability(
),weobserveddriftingbimodals,driftingtransverserolls,andlocalizedlongitudinaland
2
transversebursts.Forinclinations
wefounddriftingtransverserolls,switchingdiamond-
panes,andlongitudinalbursts.Mostofthesenovelstateswerespatio-temporallychaoticandwerefoundveryclosetoonset,wheretheoreticalprogressshouldbepossible.
Experiment:Ourexperimentalapparatusconsistedofawater-cooledpressurechambercon-tainingaconvectioncellofdiameter10cm,subdividedintotwolargeaspectratiorectangularcells.Theexperimentaldesignwassimilartotheonedescribedin[14].Theopticallyflatupperandlowerplateoftheconvectioncellconsistedof
cmthicksinglecrystalsapphireandsingle
crystalsilicon,respectively.Thesapphireplatewascooledbyawaterbath,whilethesiliconplatewasheatedbyanelectricfilmheater.Theconvectionpatternswerevisualizedbytheusualshad-owgraphtechnique[14].Thesidewallswereconstructedof9layersofnotebookpaper,providingthebestpossiblethermalmatchingbetweencellboundariesandthefluid.Asmeasuredinterfer-ometrically,theplateswereparallelto
m.Theconvectioncellwashousedinapressure
chamber,whichheldboththecoolingwaterandtheconvectinggasto(to
)bar,regulatedC.Throughout
bar.Thetemperaturesofthetwoplateswereregulatedto
theexperimentthemeantemperaturewaskeptconstantat
C.Wedeterminedthe
cellheightbymeasuringthepatternwavenumberatonsetfortheoreticalvalueof
andcomparingitwiththe
.Wefound
mand
=
mfortwosets
ofexperiments.Thetwoconvectioncellshadasizealldata,thePrandtlnumberwasviscosity
and
.For
asdeterminedfrom[14],withthekinematic
andthermaldiffusivity.Theverticalthermaldiffusiontimewas
s.
Inclinesfrom(horizontal)to
(
pastvertical)werepossible,withanaccuracyof
.
Following[2]wecalculatedtheBoussinesqnumbertoestimatenon-Boussinesqeffects.At
forthecorrespondinghorizontallayer
for
wefound
,puttingthe
flowintotheBoussinesqregime.Forlargerangles
increasedlinearlyto3.0forthelargesttem-
peraturedifferencesinvestigated.Weobservedthesameconvectivepatternsinbothconvectioncells.
Onsetofconvection:InILC,theforwardbifurcationtoLRispredictedtooccuratthecriticalRayleighnumber
where
(isthethermal
3
expansioncoefficientand
isthecriticaltemperaturedifference).Thethresholdfortheforward
bifurcationtosheardrivenTRatlargeinclinationangleismorecomplicated,andcanonlybedeterminednumerically[12,13,15].Wedetermined
forconvectionbyquasi-staticallyincreasing
instepsof1mKevery
minutespastthepointwhereconvectionwasobservableandthendecreasingthetemperature
differencesimilarly.Forallanglesweobservedforwardbifurcations.Figure2showsthemeasured
,aswellasthetheoreticallypredictedonsetsforboththebuoyancy-driven(longitudinal)and
theshear-driven(transverse)instabilities[15].WefoundagreementwiththeoryfortheonsetofLR:theexperimentallyobservedvaluewas
with
.
Wedidnot,however,observethetheoreticallypredictedstationaryTR,butinsteaddriftingTR(DTR)ataslightlylargercriticalRayleighnumber.Thedriftdowntheinclinemaybeattributedtothebrokensymmetryacrossthelayerwhichiscausedbythetemperaturedependenceofthefluidparameters(non-Boussinesqeffects).Veryinterestingisthevicinityofthetheoreticallypredictedcodimensiontwopointat
[15],whereLRandTRhavethesameonsetvalue.
Experimentally,wefoundaforwardbifurcationtoDTRaboverange
,andinthe.Asshown
DTRloststabilitytodriftingbimodals(DB)above
inFig.3,DBconsistofasuperpositionofLRandDTR.Here
isthe
reducedcontrolparameter.Theoretically,FujimuraandKelly[11]predictedaforwardbifurcationtotransverserolls,whichlosestabilitytobimodalsat
inanarrowangularregion.
Wefindgoodagreementwiththesepredictions,butwiththedifferencethattheexperimentallyobservedpatternsaredrifting.
Nonlinearstates:Figure4showsthemeasuredphaseboundariesforthetenobservednonlin-earconvectivestates.Atlowangles(
),LRarestableupto
abovewhichthenovel
stateofsubharmonicoscillations(SO)setsin.Theseoscillationsarecharacterizedbyapearl-necklace-likepatternofbright(cold)spotsthattravelalongastandingwavepatternofwavyrolls.AsshowninFig.5,theseoscillationsappearinpatcheswhoselocationchangesintime.Typi-calfrequenciesoftheoscillationsweremeasuredtobe1to3cyclesper
.Arecenttheoretical
analysishasshownagreementwiththisvalue[18].Withfurtherincreasein,localizedpatches
4
oftravelingoscillationsburstintermittently.Within
theamplitudeoftherolls’waviness
increases,thepatterntearstransversetotherollsasshownintheupperleftcornerofFig.5,andfadesawayleavinganalmostparallelrollstate.For
and
,weobservedpatchesofthewell-knownBusseoscillations(BO)
coexistingwithpatchesoftheSO.AsshownbythedottedlineinFig.4,ourdatafortheonsetoftheBOagreeswellwiththetheoreticalpredictioncalculatedfor
[12].Itissurprising,
however,thatbothoscillations(SOandBO)coexistaslocalizedpatchesinthesamecell.Atintermediateangles(
),wheretheinitialinstabilityistoLRwefoundwith
increasingthatLRwereunstabletoundulations.Althoughtheexperimentallydeterminedvaluefortheinstability
agreeswellwiththetheoreticalprediction(seeFig.4)[12,13,15],
wedidnotobserveastationarypatternofundulations,butadefect-turbulentstateofundulationchaos(UC).AsnapshotofUCisshowninFig.6a.Atinthedirectiontransversetotherollsontimescales
,theUCbeginsto“twitch”
.Withincreasing,theamplitude
ofthetwitchingincreasesandtherollseventuallytear,withtheends“crawling”inthedirectiontransversetotheoriginalrolls.Asnapshotofcrawlingrolls(CR)isshowninFig.6b.Inthevicinityofthecodimension-twopoint,at
,weobserveddriftingbimodalsquiteclose
toonset.AsshowninFig.4,forsmallanglestheexistenceregionofthepureDBislimitedbylocalizedtransversebursts(TB),whileforlargeanglesbyDTR.AsnapshotoftransverseburstsandtheevolutionofasingleburstisshowninFig.7.InthisregionofphasespacetheLRoccurinpatchesthatgrowanddecayintermittentlywhileTBnucleateinhighamplitudeLR-regions.AsshowninthetimeseriesinFig.7,TBgrowovertheperiodofafewAbove
andthendecayrapidly.
theDBareunstabletolocalizedlongitudinalbursts(LB)asshowninFig.8a.As
showninFig.8b–j,afewlongitudinalrollsgrowlocallytolargeamplitudeandthenquicklyfade.Withbothtypesofbursts,theburstsincreasebothindensityandfrequencywheneventuallydevelopingintoaturbulentstateatPast
isincreased,
.
,wecontinuedtoobservesheardrivenconvectionpatterns.DTRaretheprimary
instability;however,theyareunstabletoswitchingdiamondpanes(SDP)atcharacterizedbyspatio-temporallychaoticswitchingontime-scalesof
5
.Thestateis
from
to
oflargeamplituderegionsofDTR,asseeninFig.9a.At
SDPareunstabletoLB,which
inthisregionofphasespacearedenserbuttravellessdistancethaninTR,asshowninFig.9b.Conclusion:Inclinedlayerconvectionintheweaklynonlinearregimedisplaysarichphasediagram,withtendifferentstatesaccessibleovertherangeofparametersinvestigated.Thephasespacenaturallydividesintoseveralregionsofcharacteristicbehaviorwhichhavesofarbeenchar-acterizedsemi-quantitatively.Allstatesbutlongitudinalandtransverserollsarespatio-temporallychaotic.Mostinstabilitiesoccurredveryclosetoonsetandfurthertheoreticaldescriptionshouldbepossible.Especiallyinterestingistheburstingbehavior,whichmayberelatedtoturbulentburstsinothershearflows[19].
WethankF.H.BusseandW.Peschforimportantdiscussionsonthestabilitycurvesandtheoreticaldescriptionsofvariousstates.E.B.acknowledgesthekindhospitalityofProfH.LevineattheUniversityofCaliforniaatSanDiegowherepartofthismanuscriptwasprepared.WegratefullyacknowledgesupportfromtheNSFundergrantDMR-9705410.
6
REFERENCES
PresentlyatCenterforNonlinearDynamics,UniversityofTexasatAustinEmail:eb22@cornell.edu
[1]M.C.CrossandP.C.Hohenberg,Rev.Mod.Phys.65,851(1993).
[2]E.Bodenschatz,W.Pesch,andG.Ahlers,Annu.Rev.FluidMech.32,709(2000).[3]K.M.S.Bajaj,J.Liu,B.Naberhuis,andG.Ahlers,Phys.Rev.Lett.81,806(1998).[4]Y.Hu,W.Pesch,G.Ahlers,andR.E.Ecke,Phys.Rev.E58,5821(1998).
[5]J.L.Rogers,M.F.Schatz,J.L.Bougie,andJ.B.Swift,Phys.Rev.Lett.(tobepublished).[6]L.KramerandW.Pesch,Annu.Rev.FluidMech.27,515(1995).
[7]Y.ChenandA.J.Pearlstein,J.FluidMech.198,513(1989)andreferencestherein.[8]J.E.Hart,J.FluidMech.47,547(1971).
[9]D.W.Ruth,G.D.Raithby,andK.G.T.Hollands,J.FluidMech.96,481(1980).[10]J.N.ShadidandR.J.Goldstein,J.FluidMech.215,61(1990)andreferencestherein.[11]K.FujimuraandR.E.Kelly,J.FluidMech.246,545(1993);inBifurcationPhenomena
andChaosinThermalConvection,editedbyH.H.Bau,L.A.Bertram,andS.A.Korpela,ASME:HTD,214,73,(1992).
[12]R.M.CleverandF.H.Busse,J.FluidMech.81,107(1977).[13]F.H.BusseandR.M.Clever,J.Eng.Math.26,1(1992).[14]J.R.deBruyn,etal.,Rev.Sci.Instrum.67,2043(1996).[15]W.Pesch(privatecommunication).[16]MPEG
movies
of
spatio-temporally
chaotic
states
are
available
at
http://milou.msc.cornell.edu/ILCmovies.
7
[17]K.E.DanielsandE.Bodenschatz(unpublished).[18]F.H.BusseandR.M.Clever(privatecommunication).
[19]E.KnoblochandJ.Moehlis,inPatternformationincontinuousandcoupledsystems,edited
byM.Golubitzki,D.Luss,andS.H.Strogatz(Springer-Verlag,Berlin,1999).
8
y
ggg vd(a)
θ
T2
(b)
T1
zy
T1
z
T2
gg gθ
FIG.1.Schematicofthebaseflow.(a)Heatedfrombelowand(b)heatedfromabove;cellheight,
gravitationalacceleration,shearflow,andtemperaturedifference
with
.
8Rc / 17086420
0
20
40
60θ (o)
80
100
120
Longitudinal~ 1/cosθ
Transverse
FIG.2.Onsetoflongitudinalrolls()anddriftingtransverserolls().Alsoplottedarethepredicted
onsetsforlongitudinal(dashed)andtransverserolls(solid)[15].
9
FIG.3.DigitallyenhancedshadowgraphimageofbimodalsdriftingfromlefttorightinCell1for
,
.Theleftsideofthecellishigherthantheright,withwarmup-flowtotheleftand
colddown-flowtotheright.Therollsattheedgesofthecellarecausedbysidewallimperfections.MPEGmoviesofallstatesareavailableonline[16].
10
10.00BOSO0.10LBTBDBDTRSDP1.00CRε0.01758085900.10LRUCLBDBSDPTB0.010LR3060θ (o)
DTR90120FIG.4.(,)phase-spaceshowingtheboundariesbetweenthedifferentnonlinearstates.LR(longitu-dinalrolls),BO(Busseoscillations),SO(subharmonicoscillations),UC(undulationchaos),CR(crawlingrolls),DTR(driftingtransverserolls),DB(driftingbimodals),LB(longitudinalbursts),TB(transversebursts),andSDP(switchingdiamondpanes).ThedottedlineisthepredictedonsetofBusseoscillationsfor
[12],thedashedlineisthepredictedonsetofundulations[15],andthesolidlinesareguides
totheeye.Opencircles(UC)weremeasuredviadefectdensity[17],opendiamonds(SDP)weremeasuredviacorrelationlength[17],andtheremainderweremeasuredvisually.Theinsetshowsamagnificationofthecodimension-tworegion.
11
FIG.5.ContrastenhancedshadowgraphimageofsubharmonicoscillationsinCell1,withaturbulentburstintheupperleftcorner.
,
.Warmup-flowtotheleftandcolddown-flowtotheright.
12
FIG.6.Digitallyenhancedshadowgraphimagesofconvectionstatesattionchaosatright.
inCell1.(a)Undula-
.(b)Crawlingrollsat
.Warmup-flowtotheleftandcolddown-flowtothe
13
FIG.7.Digitallyenhancedimagesof(a)transverseburstsinspatio-temporallychaoticlongitudinalrolls,at
and
inCell1.(b–u)time-evolutionofasingleburstattime-intervals
.
Warmup-flowtotheleftandcolddown-flowtotheright.
14
FIG.8.Digitallyenhancedimagesof(a)longitudinalburstsatj)time-evolutionofasingleburstattime-intervalstheright.
and
inCell1.(b–
.Warmup-flowtotheleftandcolddown-flowto
15
FIG.9.Digitallyenhancedshadowgraphimagesof(a)switchingdiamondpanes(and(b)longitudinalburstswithindiamondpanes(andcolddown-flowtotheright.
,
)
,
)inCell1.Warmup-flowtotheleft
16
因篇幅问题不能全部显示,请点此查看更多更全内容