您的当前位置:首页正文

人教版初一数学 相交线与平行线知识点与习题

来源:华佗健康网


第五章相交线与平行线

1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。 2、互为邻补角:

(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。

(2)性质:从位置看:互为邻角; 从数量看:互为补角; 3、互为对顶角:

(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。 (2)性质:对顶角相等

垂直

4、垂直:

(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。

(2)性质:过一点有且只有一条直线和已知直线垂直。 (3)表示方法:用符号“⊥”表示垂直。

5、任何一个“定义”既可以做判定,又可以做性质。 6、垂线是一条直线,垂线段是垂线的一部分。 7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。 两点间的距离:连接两点间的线段的长度。

“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。

同位角、内错角、同旁内角

9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。

10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。

11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。

相交线、平行线

12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。

13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。

14、平行线:

(1)定义:在平面内不相交的两条直线,叫做平行线。 (2)表示方法:用符号“∥”表示平行。

(3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。

(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 (5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。

判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。

判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行(简单说成:同旁内角相等,两直线平行)。

判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。

(6)性质1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。

性质2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角相等)。 性质3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。 15、命题

(1)定义:表示判断一件事情的语句,叫做命题。

(2)分类:命题分为 真命题:正确的命题。 假命题:错误的命题。 (3)组成:命题是由条件(题设)和结论两部分组成。条件(题设)是已知事项,结论是由已知事项推出的事项。

(4)定理:通过推理证实过的真命题叫做定理。定理也可以作为继续推理的依据。

平移

16、平移:

(1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。

(2)性质1:平移不改变图形的形状和大小,只改变图形的位置。

性质2:经过平移对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。 (3)作图步骤:

1、按照题目要求,确定平移方向和距离; 2、找出所作图形的关键点,例如顶点; 3、沿确定的方向和距离平移所有关键点; 4、联结平移后的关键点并标出对应字母。

习题:

1、同位角、内错角、同旁内角?

2、如图, AB//CD,AE平分∠BAD,CD与AE相交于F,∠CFE= ∠E。求证:AD//BC

3、如图:AC平分∠DAB,∠1=∠2,填空:因为AC平分∠DAB,证明 AB∥CD。

D 2 C 1 A

B

4、已知:如图,∠1=40°,∠2=65°,AB∥DC,求:∠ADC和∠A的度数.

5、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.

D

3 2

E 1 4

F

A B C

6、如图,AB是一条直线,∠C = ∠1,∠2和∠D互余,BE⊥FD于G. 求证:AB∥CD .

7、如图已知直线a∥b,AB平分∠MAD,AC平分∠NAD,DE⊥AC于E,求证:∠

1=∠2.

M A 2 1 B D C E b N a

8、已知:如图,CD平分∠ACB,AC∥DE,∠DCE=∠FEB,求证:EF平分∠DEB.

A D F

C

E

B

因篇幅问题不能全部显示,请点此查看更多更全内容