A Negative-Refractive-Index Metamaterial for Incident Plane Waves of Arbitrary Polarization
ANegative-Refractive-IndexMetamaterialforIncidentPlaneWavesofArbitraryPolarization
LoïcMarkley,StudentMember,IEEE,andGeorgeV.Eleftheriades,Fellow,IEEE
Abstract—Inthisletter,aleft-handedartificialdielectricisproposed.Usingresonatingbroadsidecoupledpatchestogen-erateanegativepermeabilityandthinstripstogeneratenegativepermittivity,anegativeindexofrefractionthatismatchedtofreespacecanbedesigned.Thestructureisfabricatedfromasingledielectricsheetprintedonbothsidesbymetalpatternsthatcoupletoexternallyincidentplanewavesofanylinearpolarization.Unlikemanypreviouslypublishedstructures,thewavesinteractthroughperpendicularincidencetothesurface.Anexperimentwascarriedoutat10GHztoverifytheleft-handedbehaviorwithanextractedindexofrefractionof1.04matchedtofree-spacewith26.0dBreturnlossand0.77dBinsertionloss.Amultilayerversionwasalsodesignedthatachievedfractionaldispersionbandwidthscomparabletothoseoftransmission-lineimplementations.
IndexTerms—Left-handedmedia(LHM),negativepermeability,negativepermittivity,negativerefractiveindex,polarizationindependence.
Fig.1.Proposedstructure’sunitcell(explodedview).
I.INTRODUCTION
VERsinceVeselagotheorizedthataleft-handedmedium(LHM)wasimpliedfromthepresenceofsimultaneouslynegativepermeabilityandpermittivity[1],scientistsanden-gineershavestrivedtomakeonephysicallyrealizable.Negativestructureshavelongbeenwellunderstoodbutitwasnotuntildevelopmentsweremadeintheareaofartificialmagneticma-terials[2]thatanegative-refractive-index(NRI)structurewassuccessfullyconstructedandtested[3].
TheLHMof[3]usedthinwiresplacedparalleltotheelec-tricfieldandsplit-ringresonators(SRRs)alignedwiththemag-neticfieldtogenerateanNRImedium.DrawinganalogieswithNRItransmission-linetheory[4],thewiresactasshuntinduc-torswhiletheSRRsmutuallycoupletothehostmediumse-riesinductanceinsuchawayastoproduceaneffectiveseriescapacitance.
ThisletterintroducesanalternativeNRI(LHM)structurethatcouplestoincidentplanewavesfromfreespaceatadesignfre-[5].AlthoughitderivesfromtheSRRquencyof
andthin-wiremechanisms,unlikethestructurein[3]thatisdesignedsuchthattheelectromagneticwavestravelalongtheplanesoftheprintedboards,thisletter’sproposedstructurere-quiresonlyasinglethindielectricsheetplacednormaltothe
Fig.2.Transmission-lineequivalentcircuit.
E
directionofpropagation.Fullyprintable,thisstructuredemon-stratesagreatlysimplifiedfabricationprocedureandfurther-more,duetothestructure’shighsymmetry,itisresponsivetoeverytypeoflinearpolarization.Itmustbenotedthatthepro-posedtopologyhasastructuralsimilaritytothe“fishnet”designintroducedin[6]butgiventhatitoperatesatmicrowavefrequen-cies,itcannotutilizethesurfaceplasmawaveeffectsfromtheopticalregimetoobtaintheNRIresponse.In[7],asimilarcon-ceptwasindependentlydevelopedalsoatmicrowavefrequen-ciesbutonlyforasinglepolarizationandcharacterizedonlyfornormalincidence.Moreover,inthisletteramultilayerversionofthisNRImetamaterialisintroducedwhoseunderlyingtransmis-sion-lineeffectallowsthefractionaldispersionbandwidthtobeextendedsignificantlyabovethatofthesingle-layerstructure.
II.PROPOSEDGEOMETRY
Theproposedstructure’sunitcellisillustratedinFig.1withtheequivalentcircuitinFig.2.Thestructureisformedfroma
anddielectricconstantdielectricslabofthickness
printedidenticallyonbothsideswitha17metal
layer.Themetallizationpatternhasaunitcellofdimension
andcanbedeconstructedintoanarrayofsquarepatches
andanarrayofthinstripsofwidthofwidth
.
Thethinstripsalignedwiththeelectricfieldprovideanegativethroughtheadditionofashuntinductancetothetransmission-linemodel(seeFig.2).Analyzedin[8]and[9],the
ManuscriptreceivedNovember3,2006;revisedDecember5,2006.
TheauthorsarewiththeDepartmentofElectricalandComputerScience,UniversityofToronto,Toronto,ONM5S3G4,Canada(e-mail:gelefth@waves.utoronto.ca).
DigitalObjectIdentifier10.1109/LAWP.2007.890758
1536-1225/$25.00©2007IEEE
MARKLEYANDELEFTHERIADES:NEGATIVE-REFRACTIVE-INDEXMETAMATERIAL29
effectivecanbeexpressedby(1),where
isthe“plasmafrequency”oftheeffectivemediumwiththeper-unit-lengthinductanceofasingleisolatedwireandandthewirespacingsalongthetwoaxesorthogonaltothewireaxis.Theadditionofasecondsetofstripsperpendiculartothefirstprovidesanequalresponsetoalllinearelectricfieldpolarizations.
(1)
TheseriescapacitancenecessarytoachievenegativearisesfromthesamemechanismasforSRRswithcapacitivelyloadedconductingloopscouplingtothemagneticfield,asshowninFig.2.Theexpressionfortheeffectiveisgivenby(2),where
istheloopresonantfrequency,is
apositivescalingquantitylessthanunity,isthelooparea,istheloopvolumedensity,istheloopinductance,andistheloopcapacitance.
(2)
Thebroadsidecoupledpatchesarelinkedbyfringingcapac-itanceateachedge,completingaconductingpathforthecur-rentinducedbythemagneticfield.Thisissimilarinnaturetoideaspresentedin[10]forplasmonicnanowiremedia.Lumpedcapacitorscanbeusedtoenhancethefringingcapacitanceandreducetheunitcellsizebutatthecostofincreasedmanufac-turingcomplexity.
III.SIMULATIONRESULTS
IftheLHMstructureistreatedasahomogeneousdielec-tricslab,theeffectiveand
canbeextractedfromthetwo-portscatteringparameters.UsingAnsoft’sHFSSfinite-el-ement-methodsoftwarepackage,oneunitcellofthisstructurewassimulatedinsideanidealparallel-platewaveguideandthecomplexreflectionandtransmissioncoefficientsmeasured.Themethodoutlinedin[11]and[12]detailshowtheeffectiveindexofrefractionandrelativecharacteristicimpedanceofthestructurecanbecalculatedandfromthem,andextracted.Homogeneityisjustifiedbytreatingthemetamaterialslabasa“blackbox”andobservingthatthephase-shiftthroughitforanincidentplanewavewillbeindistinguishablefromthatofahomogeneousslabhavinganequivalentindexofrefraction.Combiningthethin-wirestructurewiththepatchstructurein-troducedmutualcouplingthatshiftedtheresponsesofandfromthepreliminarysimulationswheneachwasexaminedwithouttheother.Thepresenceofthepatchesdecreasedthein-ductanceofthewiresbyreducingthecirculatingmagneticfluxwhilethewiresloweredthepatchresonancebyincreasingthecapacitivecouplingbetweenadjacentunitcellpatches.Further-more,thissamecapacitanceincreasedtheeffectivewithfre-quencywhilearesonance-antiresonancecouplingwasobservedatthepatchresonantfrequencygivingrisetoaregionwheretheimaginarycomponentofwaspositive.Thislasteffectisaphysicallyunrealisticresultthathasbeenobservedbefore[13]andhasbeenattributedtothelongeffectivewavelengthcloseto
Fig.3.Extractedandfornormallyincidentwavesofhorizontal(lines)anddiagonal(markers)polarizations.Atthedesignfrequency=01:03and=0the1:diagonally00forthehorizontallypolarizeddata.
polarizeddataand=01:04and=01:01forFig.4.Extractednandscatteringparametersfornormallyincidentwavesofhorizontal(lines)anddiagonal(markers)polarizations.Atthedesignfrequencynzontally=01polarized:01with43.1datadBandreturnn=0loss1:03andwith0.0042.6dBdBinsertionreturnlosslossforandthe0.00hori-dBinsertionlossforthediagonallypolarizeddata.
theresonancecondition.Byfine-tuningthegeometricalparam-eters,aneffective
wassuccessfullydesignedusingthephysicalthicknessofthestructureastheeffectivethicknessoftheextractionprocedure.TheeffectiveparametersareplottedversusfrequencyinFigs.3and4.
TheunitcellofFig.1wasdesignedwithahighdegreeofsymmetryinordertoprovidecompletepolarizationindepen-denceatnormalincidence.Thispropertywasverifiedwithin1%numericalerrorbyilluminatingthestructurebyaplanewave
asinFig.5(a)andcomparingtheresultsfrom
and.A.LossandOff-NormalAnalyses
Sinceallpreviousresultswerebasedonlosslessmaterials,thestructurewasre-simulatedwitharealisticlossyRT/Duroid
dielectric(losstangent
)withcoppermetallization(conductivity).Thenewextractedeffec-tiveindexofrefractionandscatteringparametersaresuperim-posedonthelosslessparametersinFig.6.Notethatalthoughtherealpartofisbarelychangedat,animaginarycompo-nentisintroducedtoaccountforthe10%totallossinpower.
30Fig.5.(a)Variablepolarizationsetup.(b)Off-normalplanewavesetup.
Fig.6.Extractednandscatteringparametersforthelossless(lines)andlossy(markers)designs.Atthedesignfrequencythelossystructurehasann=00:980j0:10with32.8dBreturnlossand0.47dBinsertionloss.
Fig.7.Extractednandscatteringparametersfortheoff-normaldesignunderTEpolarization.
Thiscanbecomparedtothepatchresonancelossof26%at
wherethecurrentscirculatingthroughthepatch
loopsarehighest.Theoperatingfrequencyisfarenoughawayfromthisresonancepeakthatthemagneticresponselossesaresignificantlyreducedandthepermittivitylossesdominate.Thesubsequentsimulationsexaminedtheeffectoftiltingtheincidentplanewavetooff-normalincidenceasshowninFig.5(b).Thetransverse-electric(TE)modewasexamined
underincidenceanglesrangingbetween
withtheresultsdisplayedinFig.7.Althoughthestructurebecamemismatchedtofreespaceatincreasinglyoff-normalincidence,theeffectiveremainednegativeasitdroppedtoat.Theinversionalgorithmusedtoextracttheeffectivesimplemediumindexofrefractionwasderivedalongthelinesofthederivationin[11].Theanisotropicnatureoftheproposedstructureinwhichonlytheandcomponentsoftheandtensorsarenegativeimpliesthatnegativerefractionatoff-normalanglesonlyoccurswiththepropagationvector,andnotthePoyntingvector.Thismeansthattheeffective
IEEEANTENNASANDWIRELESSPROPAGATIONLETTERS,VOL.6,2007
Fig.8.(a)Unitcellforthemultilayerstructureillustratingthealternatingpatchandwiremetallayers.(b)DispersiondiagramforthemultilayervariationoftheproposedNRIstructure.
indexofrefractionrefersonlytoaphaseadvance.Moreover,atoff-normalangles,polarizationindependenceoftheindexforTEandtransverse-magneticpolarizationscouldbeachievedas
longasthetensorcomponentsandwereequal.B.ExtensiontoaMultilayerStructure
Thestructureexaminedthusfarisasingle-layerimplementa-tionthatdoesnothavetheflexibilitytobeusedinapplications
requiringthickerNRImedia.Althoughthecurrentsingle-layerstructurecanbeformedintoamultilayermediumifthelayersarespacedby2.5-mmairgaps,theNRIregionbandwidthdropsto2%andtheoperatingfrequencyispushedclosertothelossyresonance.
Byincreasingthewirespatialfrequencytoensuretheoverlapbetweenthenegativeandregions,thelayerswerestackedcontiguouslytoproducea47%fractionalNRIbandwidth.Thiswasasignificantimprovementoverthe4%bandwidthofthesingle-layerstructureandwasaconsequenceofthecloselycou-pledpatchresonatorswhichcombinedwiththewirestoformatrueNRItransmission-linemedium[4].
Ontheotherhand,tooptimizethematchingtofreespaceandensureindependenceoftheeffectiveparametersoverthetotalslabthickness,thewireandpatchpatternswereseparatedintoalternatingmetallayersasshownindetailinFig.8(a).Theunitcellwidth,thickness,anddielectricconstantwereunchangedfromtheinitialproposedsingle-layerstructure,butthemetal
geometryparameterswerechangedto
and.
Fig.8(b)presentsthedispersiondiagramfortheresultingmultilayerstructurewithimprovedmatchingtofreespace.Aneigenmodesimulationontheunitcellconvergedat10GHztoabackward-wavemodewithafractionalbandwidthof19%.Theextracteddatafromaone-layerscatteringparameteranal-ysisisplottedonthesamegraphwithabackward-wavemodeoccurringoverroughlythesamefrequencyrangeasfortheeigenmodedata.Thematchingcapabilityofthisstructurewasdemonstratedbytuningtheone-layergeometryuntilareturnlossof30.7dBwasreachedat10GHz.
IV.MEASUREMENTRESULTS
Inordertocarryouttheexperimentalmeasurementsonthesingle-layerstructure,a1515unitcellsamplewasfabricated
MARKLEYANDELEFTHERIADES:NEGATIVE-REFRACTIVE-INDEXMETAMATERIAL31
Fig.9.Free-spacetwo-portS-parametermeasurementapparatus.
Fig.10.Extractedandfromtheexperimentaldataforhorizontalpolar-ization(lines)anddiagonalpolarization(markers).Attheoperatingfrequency,and=0=1:0011:013j00:28j0:26andand==010:070:9900j0j:007:11forforthethehorizontaldiagonalpolarization.
polarizationusinganLPKFProtoMatH100millingmachine.Thesubstrateusedwasa100-milRogersRT/Duroid6010LMwithhalfouncecoppercladdingoneachside.Thefirstconstructedsampleex-hibitedaneffectivethin-wireplasmafrequencybelowthede-signfrequencyandsoanadditionalsamplewasfabricatedusing
awirethicknessof
andapatchsizeof.Thisiterativeprocesswasnecessarytofine-tunethe
geometrytothedesignobjectives.
TheexperimentalsetupincludedtwoATMX-bandstandardgainhornantennaswith8inchbiconvexRexolitelensestofocusthebeamthroughthesample(seeFig.9).AnAgilentE8364Bnetworkanalyzercalibratedusingafree-spaceTRLmethodmeasuredthetwo-portscatteringparameterswhichwerein-vertedtoextracttheconstitutiveparameters.
ThedatainFigs.10and11confirmexperimentallytheproposedNRIbehaviorattheoperatingfrequencyof
.Thepermeabilityandpermittivityexhibitthe
expectedresonanceandplasmonicresponses,combiningtoprovideanegativeindexofrefractioncloseto1andwellmatchedtofreespace.Theadditionallossesincurredduringtheexperimentcanbelargelyattributedtotheuseofthebulkconductivityofcopperinsimulationswhichdoesnotaccountforsurfaceroughnesseffects[14].Ignoringtheheavyburringalongtheedgesofthecoppertracesandtheroughnessintro-ducedbythemillingprocess,the1.9
roughnessgivenbythesubstratedatasheetraisestheinsertionlossto0.63dB.
V.CONCLUSION
AnNRImediumthatcancoupletoexternallyincidentplane
waveshasbeensuccessfullydemonstrated.Negative
wasFig.11.Extractednandscatteringparametersfromtheexperimentaldataforhorizontalpolarization(lines)anddiagonalpolarization(markers).Attheop-eratingfrequency,n=01:040j0:17with26.0dBreturnlossand0.77dBinsertionlossforthehorizontalpolarizationandn=01:060j0:18with26.9dBreturnlossand0.84dBinsertionlossforthediagonalpolarization.
achievedthroughcapacitivelyloadedconductingloopsimple-mentedasresonatingbroadsidecoupledpatches,whilenegative
arosefromthinstriparrays.Thestructurewasdesignedtoproduceanindexofrefractionofmatchedtofreespacewithareturnlossof43.1dB.Varyingthepolarizationangledidnotaffectorthematchingwhileintroducinglossesonlyraisedtheinsertionlossto0.47dB.Sweepingtheinci-denceanglefromnormalto
off-normalreducedtherefractiveindexto
whileraisingthemismatchto8dBreturnloss.
Amultilayervariationofthisstructurewasalsodesignedandsimulatedwithabackward-wavemodeat10GHzcoveringafractionalbandwidthof19%andexhibitingacharacter-isticimpedanceneartothatoffree-space.Theextendedbandwidthofthemulti-layerstructurecanbeattributedtoatransmission-lineeffectwhichtakesplacebecausethepatchresonatorsarecloselycoupledtogetherintandem.
Asamplesingle-layerstructurewasconstructedandtheNRIpropertiesexperimentallyverifiedwithafree-spacescatteringparametersetup.Themeasurementdatawasanalyzedtoyield
anextracted
matchedwith26.0dBreturnlossand0.77dBinsertionloss.Withafullyprinteddesignusingasingledielectricsheet,thisstructureisverysimpletofabricateandprovidesanalternativeimplementationtotheLHMsfoundintheliteraturetoday.
REFERENCES
[1]V.G.Veselago,“Theelectrodynamicsofsubstanceswithsimultane-ouslynegativevaluesofand,”Sov.Phys.Usp.,vol.10,pp.509–514,1968.
[2]J.B.Pendry,A.J.Holden,D.J.Robbins,andW.J.Stewart,“Mag-netismfromconductorsandenhancednonlinearphenomena,”IEEETrans.Microw.TheoryTech.,vol.47,no.11,pp.2075–2084,Nov.1999.
[3]D.R.Smith,W.J.Padilla,D.C.Vier,S.C.Nemat-Nasser,and
S.Schultz,“Compositemediumwithsimultaneouslynegativeper-meabilityandpermittivity,”Phys.Rev.Lett.,vol.84,no.18,pp.4184–4187,May2000.
[4]G.V.Eleftheriades,A.K.Iyer,andP.C.Kremer,“Planarnegative
refractiveindexmediausingperiodicallyL0Cloadedtransmis-sionlines,”IEEETrans.Microw.TheoryTech.,vol.50,no.12,pp.2702–2712,Dec.2002.
[5]L.MarkleyandG.V.Eleftheriades,“Apolarizationindependent
negative-refractive-indexmetamaterialforincidentplanewaves,”inProc.IEEEAntennasPropag.Symp.,Albuquerque,NM,Jul.2006,pp.1923–1926.
[6]S.Zhang,W.Fan,K.J.Malloy,S.R.J.Brueck,N.C.Panoiu,andR.
M.Osgood,“Near-infrareddoublenegativemetamaterials,”Opt.Exp.,vol.13,no.13,pp.4922–4930,Jun.2005.
[7]J.Zhou,L.Zhang,G.Tuttle,T.Koschny,andC.M.Soukoulis,“Neg-ativeindexmaterialsusingsimpleshortwirepairs,”Phys.Rev.B,vol.73,no.4,p.041101,Jan.2006.
[8]J.B.Pendry,A.J.Holden,W.J.Stewart,andI.Youngs,“Extremely
lowfrequencyplasmonsinmetallicmesostructures,”Phys.Rev.Lett.,vol.76,no.25,pp.4773–4776,June1996.
[9]Q.Wu,F.-Y.Meng,M.-F.Wu,J.Wu,andL.-W.Li,“Researchon
thenegativepermittivityeffectofthethinwiresarrayinleft-handedmaterialbytransmissionlinetheory,”inProc.ProgressinElectromag.Res.Symp.,Hangzhou,China,Aug.2005.
IEEEANTENNASANDWIRELESSPROPAGATIONLETTERS,VOL.6,2007
[10]A.K.SarychevandV.M.Shalaev,Negative-RefractionMetamate-rials,G.V.EleftheriadesandK.G.Balmain,Eds.NewYork:Wiley-IEEE,Jun.2005.
[11]P.MarkosandC.M.Soukoulis,“Transmissionpropertiesandeffective
electromagneticparametersofdoublenegativemetamaterials,”Opt.Exp.,vol.11,no.7,pp.649–661,Apr.2003.
[12]X.Chen,T.M.Grzegorczyk,B.-I.Wu,J.Pacheco,Jr.,andJ.A.Kong,
“Robustmethodtoretrievetheconstitutiveeffectiveparametersofmetamaterials,”Phys.Rev.E,vol.70,no.1,p.016608,Jul.2004.[13]T.Koschny,P.Markos,E.N.Economou,D.R.Smith,D.C.Vier,and
C.M.Soukoulis,“Impactofinherentperiodicstructureoneffectivemediumdescriptionofleft-handedandrelatedmetamaterials,”Phys.Rev.B,vol.71,no.24,p.245105,June2005.
[14]S.P.Morgan,Jr.,“Effectofsurfaceroughnessoneddycurrentlosses
atmicrowavefrequencies,”J.Appl.Phys.,vol.20,pp.352–362,1949.
32
因篇幅问题不能全部显示,请点此查看更多更全内容