RobustClassificationofBlurredImagery
DeepaKundur,Member,IEEE,DimitriosHatzinakos,SeniorMember,IEEE,andHenryLeung,Member,IEEE
Abstract—Inthispaper,wepresenttwonovelapproachesfortheclassificationofblurryimages.Itisassumedthattheblurislinearandspaceinvariant,butthattheexactblurringfunctionisunknown.Theproposedfusion-basedapproachesattempttoper-formthesimultaneoustasksofblindimagerestorationandclas-sification.Wecallsuchaproblemblindimagefusion.Thetech-niquesareimplementedusingthenonnegativityandsupportcon-straintsrecursiveinversefiltering(NAS-RIF)algorithmforblindimagerestorationandtheMarkovrandomfield(MRF)-basedfu-sionmethodforclassificationbySchistad-Solbergetal..Simula-tionresultsonsyntheticandrealphotographicdatademonstratethepotentialoftheapproaches.Thealgorithmsarecomparedwithoneanotherandtosituationsinwhichblindblurremovalisnotat-tempted.
IndexTerms—Blindimagerestoration,classification,multispec-tralimagefusion.
I.INTRODUCTION
HEinaccuracyofmanyimageclassificationstrategiesoftenresultsfromattemptingtofusedatathatexhibitsmotion-inducedblurringordefocusingeffects.Compensationforsuchblurringisinherentlysensor-dependentandisnon-trivialastheexactblurisoftentime-varyingandunknown[1].Insuchasituation,restorationisfrequentlyperformedonthedegradeddatapriortoclassification.Amajorobstacleariseswhentheexactblurringfunctionisunknown.Thismaybeover-comebyusingblindimagerestorationalgorithms.Blindimagerestorationreferstothedualprocessofbluridentificationandimagerestorationandisusedonlywhenpartialinformationabouttheimagedegradationprocessisavailable.Itissuitedforsituationsinwhichtheblurringandnoisecharacteristicsoftheimagingsystemmaybeunknownduetotheirtime-varyingnature.Arecentsurveyofsuchalgorithmscanbefoundin[2].Theweaknessofmostblindrestorationtechniquesstemsfromnumericalinstability;thereisofteninsufficientinforma-tiontoprovideanaccurateregularizedsolutiontotheproblemandnoiseamplificationmayresult[3].Inaddition,itmaybeimpracticalforahumanobservertosupervisetherestorationstopreventinstability.Thismayresultinanunreliableimageestimate,whichinturncaneffecttheaccuracyofsubsequenthigher-levelprocessingtaskssuchasclassification.
Inthispaper,weconsidertheclassificationofblurredandnoisyimagesusingdatafusionstrategies.Itisimportantthatwe
ManuscriptreceivedMay4,1998;revisedApril28,1999.Theassociateed-itorcoordinatingthereviewofthismanuscriptandapprovingitforpublicationwasProf.ScottT.Acton.
D.KundurandD.HatzinakosarewiththeDepartmentofElectricalandCom-puterEngineering,UniversityofToronto,Toronto,Ont.,Canada,M5S3G4(e-mail:dimitris@comm.toronto.edu).
H.LeungiswiththeDepartmentofElectricalandComputerEngineering,UniversityofCalgary,Calgary,Alta.,Canada,T2N1N4.PublisherItemIdentifierS1057-7149(00)01158-1.
T
distinguishbetweenouruseoftheterms“fusion”and“classi-fication.”Multisensordatafusionreferstotheacquisition,pro-cessing,andsynergisticcombinationofinformationfromvar-iousknowledgesourcestoprovideabetterunderstandingofthesituationunderconsideration[4].Classificationisaninforma-tionprocessingtaskinwhichspecificentitiesaremappedtogeneralcategories.Fortheclassificationofmultispectralim-ages,thespecificgoalistoassigneachvector-valuedpixelofthecombinedmultispectralimagetoitsappropriatecategoryusingtonaland/ortexturaldata;theresultisasinglecolor-codedimageshowingtheseveraltypesofclassesinthescene.Inthispaper,imageclassificationisthespecificgoalwewishtoachieveanddatafusionistheprocessbywhichweaccomplishthetask.
Theaccuracyofimageclassificationisoftenhighlyde-pendentonthequalityoftherestoredimages1.Wearguethatperformingblindimagerestorationpriortoandseparatelyfromclassificationresultsinsuboptimalsolutions.Weattempttocombinebothprocessesusingmultisensordatafusionstrategiestoproduceamoreregularizedsolution;wecallthisprocessblindimagefusionforclassification.Theproblemhasappli-cationstomanyareasofimageanalysis,suchasrobotvision,remotesensingforland-useclassificationandmedicalimaging,amongothers.Theimagerymaybemultisensor/multispectralinnatureorcanconsistofasinglesensorimageband.Themaincontributionsofthispaperareasfollows.
1)Theintegrationofblindimagerestorationwithtraditionaldatafusionconceptstoprovideamoreoptimalimageclassification.Twonovelapproachesbasedondifferentphilosophiesareproposedtoaddresstheproblemofblindimagefusion.
a)Inourfirsttechniquewetakeanewperspectiveontheimageestimatesateachiterationofarecursiverestorationalgorithm.Eachestimateistreatedasadifferentreadingofanimagesensorandtheesti-matesaresimultaneouslyfusedtoproduceamoreregularizedclassifiedimage.
b)Inthesecondapproachwedefineanerrormetricwhichusestheresultsfromintermediate-levelimagefusionandclassificationtoproduceanappropriate2terminationpointfortherestorationalgorithm.
2)Theimplementationofthetwoarchitecturestoassessthepracticalfeasibilityofblindimagefusion.Theauthorsareunawareofotheradvancedresearchintocombining
isespeciallytrueiftheclassificationtechniqueistrainedonoruses
modelsfofnonblurredimagery.
2Bythetermappropriatewemeanthattheimageestimateatterminationresultsinanaccurateclassification.Thisterminationpointisnotalwaysthebestimageestimatevisuallyorinthemeansquaresense.
1This
1057-7149/00$10.00©2000IEEE
244IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
Fig.1.Theblindimagerestorationandclassificationproblem.Thesensorimagesareassumedtobedegradedaccordingtothelineardegradationmodel.Theseimagesareusedtoproduceaclassificationofthesceneusingpartialinformationabouttheundistortedimagedscene,andtheblurringprocess.
restorationandfusionandassessthepotentialofthetech-nology.
3)Acomparativestudyoftheeffectsofblurremovalforimageclassification.Inthenextsectionwedefinethespecificproblemtoaddressanddiscussourassumptions.InSectionIIIweproposethetwonovelapproachesforblindimagefusion.ImplementationissuesarediscussedinSectionIV.SimulationresultsandcomparisonswithexistingtechniquesaregiveninSectionV,andfinalre-marksareconveyedinSectionVI.
AssumptionSet1(GeneralAssumptionsfortheBlindImageFusionProblem)
1)Multisensorimagesofthesamesceneareregistered.Iftheimagesare,forexample,thedifferentcolorbandsofacolorimage,thenitissafetoassumethattheimagesareregistered.Otherwise,aregistrationalgorithmmustbeappliedtotheimagespriortoprocessing.
2)Theblurringprocessobeysthelineardegradationmodelof(1).Thismodelissuccessfullyusedinimagingapplicationsinwhichtheblurringprocessisisoplantic(i.e.,theblurringoperationislinearandshiftinvariant).Themodelmakesthesolutiontotheimagerestorationproblemtractable[10].
3)Partialinformationabouttheimagedsceneisavailabletoperformblindimagerestoration.Thisinformationisspe-cifictothealgorithmemployed.SectionIV-A1providesthespecificassumptionsfortheNAS-RIFalgorithm.4)Statisticalinformationabouttheundistortedimagesofthesceneisavailableforclassification.Thisinformationisalsospecifictotheparticularclassificationapproachimplemented.SectionIV-A2providesthespecificsfortheMRFclassificationalgorithm.
Fig.2.NAS-RIFalgorithmforblindimagedeconvolution.
paperandthataddressedinotherliteratureonimageclassifica-tion[5]–[9]isthatweexplicitlyaccountfortheblurringdegra-dationintheimagewhileotherapproachesdonot.Wefocusonthedesignoftechniquesforthesimultaneousrestorationandclassificationofblurredimageryusingfusion-basedstrategies.Weconsiderthescenarioinwhichwehave
where
thsensor,
rep-resentsthetwo-dimensional(2-D)linearconvolutionoperator.3Ifweneglectthenoisetermin(1),theprocessofrecovering
II.PROBLEMFORMULATION
Weaddresstheissueoftherobustclassificationofblurredim-agery.Thedifferencebetweentheproblemweconsiderinthis
KUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERY245
TABLEI
STATISTICALMRFFUSIONMETHODUSINGTHEICMALGORITHM
Welistthegeneralassumptionsmadeinourproblemformu-lationbelow.Morespecificassumptionsaremadeduringimple-mentationasspecificalgorithmsareemployedforblindimagefusion.TheseassumptionsarediscussedinSectionsIV-A1andIV-A2.
A.BlurringasSignal-DependentNoise
Inthissection,wedemonstratehowarestoredimageesti-mateisconsideredtosufferfrombothsignal-dependentand-independentadditivenoiseprocesses.Weassumethatimagerestorationisperformedbytheprocessofinversefiltering(i.e.,
.4As-thefilteringof
sumingthelineardegradationmodelof(1),therestoredimage
III.BLINDIMAGEFUSION
Thetwomajorconsiderationsinthedesignofourblindimagefusionscenarioswastheportabilityofthetechniquestodif-ferentapplicationsandtheeaseofimplementation.Asare-sult,wehavedesignedourmethodssuchthattheycanincorpo-rateexistingiterativeblindimagerestorationandclassificationalgorithms.Thisallowstheflexibilitytoselectthealgorithmsmostappropriateforagivenapplication.Inaddition,theuseofwell-knownandwell-documentedmethodsmakesimplementa-tionandtestingeasier,andallowsausertopredictandassessthebehavioroftheoverallblindfusionschemetoagreaterde-gree.
Theselectionofthedatafusionapproachisbasedonexistingresearchdemonstratingthesuccessoffusionineffectivelycom-biningcomplementaryandredundantinformation(see[1],[4]andreferencestherein).Inaddition,theauthors’previousre-searchintodatafusionsuggestsitspromisefortheprocessingofdataexhibitingsignal-dependentnoise[11].Inthenextsec-tionweshowhowarestoredimagecanbeconsideredtosufferfromsignal-dependentnoise.InSectionIII-Bwediscussthegeneralscenarios.
As
wecansee,therestoredimageestimatesuffersfromtwoer-rors:
246IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
randomprocess.The
Ideally,iftheblurredimagedoesnotcontainadditivenoise(i.e.,
forallwhere
Thedifferencebetweenand
if
andsgn
and
KUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERYFig.3.BlindImageFusionMethod1:Thesimultaneousmergingofdistinctrestorations.
TABLEII
PERCENTAGECLASSIFICATIONACCURACIESFORTHESYNTHETICDATA.IMAGE2ISANADDITIONALREGISTEREDIMAGEOFTHESAMEISLAND-LIKESCENE
WHICHISDEGRADEDSOLELYBYADDITIVEWHITEGAUSSIANNOISEWITHASNROF20dB.THEboldfacerowsREPRESENTTHERESULTSOF
THEPROPOSEDAPPROACH
thesteepest-descentminimizationroutine,theupdatelawfor
istheupdatestep-size,
istheunitstepfunction,
attheAlternatively,theconju-gategradientroutinemayalsobeimplementedtominimize
247
denotesdatafromaparticularsensor,
arethe
sensorimages(inlexicographicalorder),
istheclassificationofthescene
andisthesamedimensionsasthesensorimagery.Eachelementof
arecalledthesensor-specific
6This
informationcanbeobtainedinastronomyandsatelliteremotesensing
applications.
248IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
Fig.4.BlindImageFusionMethod2:Theuseofafusion-basedstoppingcriterionforblindimagerestoration.
whereand
and
isauser-specifiednonnegativescalarparameter,isgivenby
(11)
TheoverallalgorithmweimplementedisshowninTableI.Thevalueof
9
Fig.5.SyntheticImageDatatoTestApproach1.Thegrey-levelsrepresenttheactualsimulatedradianceofthescene.(a)Original,(b)degradedimagewithBSNRof40dB,(c)restorationatsixthiteration,and(d)restorationatseventhiteration.
andin-
termediate-levelfusionfor
Thetermimpliesthattheclassificationofa
pixelatlocation
imagestatisticfunctionandthespatialcontextenergyfunction,respectively.
Inthesimulationsperformedweassumedthattheimagenoisestatisticscanbemodeledbyanormaldistributionandthatthenoiseprocessesareindependentfromoneanother.7
Asaresult,isgivenby
(9)
wassuccessfullydonebySchistad-Solbergetal.fornon-Gaussiannoisein[5].
7This
bandsfortheimagesensor,eachpixelcanbeconsid-eredtohaveanassociatedvectorwhoseelementsconsistoftheradiancevaluesfromeachofthebands.9If=0;thenU=U:Therefore,itcanbeseenfrom(9)thatthe
withrespecttoC(i;j)onlydependsonthecorrespondingminimumofU
pixelvalueofeachofthesensorimagesand,hence,theclassificationprocedureinvolvespixel-levelfusion.
KUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERY249
Fig.6.ClassificationresultsforApproach1onsyntheticdata.Thefourdifferentgrey-levelsrepresenteachofthedifferentclassesintheimage.Thewhite,black,lightgreyanddarkgreycolorsdenoteclasses1,2,3,and4,respectively.
Fig.7.Photographiccolorimagedata.Theimagesrepresenttheredbandofacolorphotographofchalk.(a)Original,(b)degradedimagewithBSNRof40dB,(c)restorationatfirstiteration,and(d)restorationateleventhiteration.
Thespecificassumptionsmadebythealgorithmareprovidedbelow.
AssumptionSet3(AssumptionsSpecifictotheMRFClassificationMethod)
1)Themeanand(co-)variancesoftheradianceofthedif-ferentclassesinthesceneareknownorestimatedfromsimilar(nonblurred)data.Thetonalandtexturalinforma-tionabouteachclassisusedbytheMRFmethodtoseg-menttheimageintodifferentregions.Thisinformationcanbegatheredfromtheuseofimagedatacontainingsimilartypesofregions[5].
2)Themultispectralimagesareofthesamedimensions.In-terpolationmethodsmaybeusedtoresizetheimagestoonesize.Theclassifiedimageresultisthedimensionsastheinterpolatedimages.
3)Theindividualsensorreliabilityfactorsforeachimageareknownpriortoblindimagefusion.Thismaybepro-videdbythesensormanufacturerorcanbeapproximatedbytheindividualsensorimageclassificationaccuracy[5].B.TheTwoApproaches
1)Approach1:SimultaneousFusionofDistinctRestora-tions:Weconsiderforsimplicitytheclassificationofasinglenoisyblurredimage,althoughthemethodcaneasilybeextendedtothesituationsinwhichothersensorimagesareavailable.Thetechniqueiscomprisedoftwostages.ThefirststageofthetechniqueinvolvestheblindrestorationoftheimageusingtheNAS-RIFalgorithm.Wehypothesizethatifwetreateachrestorationataselectedsetofiterationsastheoutputofadifferentimagesensorbandandfusetheresultsfor
Fig.8.ClassificationresultsforApproach1onphotographicdata.Thefivedifferentgrey-levelsrepresenteachofthedifferentclassesintheimage.Thewhite,lightgrey,mediumgrey,darkgreyandblackcolorsdenoteclasses1,2,3,4,and5,respectively.
classification,thentherewillbeanoverallregularizingeffectontheoutput.
ThesecondstagefusesthevariousimageestimatesintoaclassifiedimageusingtheMRFclassificationmethod.Thefu-sionprocesstakesintoaccountthecorrelationinnoiseamongthevariousimageestimates.Fig.3givesanoverviewofthepro-posedarchitecture.Wefuseseveralimageestimates,whichex-hibitvariousdegreesofblurremovalandnoiseamplification,
250IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
TABLEIII
PERCENTAGECLASSIFICATIONACCURACIESFORTHEPHOTOGRAPHICDATA.THEboldfacerowREPRESENTTHERESULTSOFTHEPROPOSEDAPPROACH
toproduceamorereliableclassifiedoutput.Assumingthatweusetherestorationsat
restorationssuchthatwhere
representstheEuclideannorm,wecan
neglect
for
areallfilteredversionsof
,10theassociatedco-variancematrixisgivenby
is
theexpectationoperator,and
whoseelementsaregivenby
arecalculatedusing(14).
theclassificationarefedbacktothefirststagetoenhancetherestoration.Wemakeuseofthesmoothnessproperties12oftheclassifiedimagetoprovideanestimateofthesuc-cessoftheblindimagerestorationstage.Oftenthevisualqualityoftherestoredimageisnotagoodindicatorofthereliabilityofhigher-levelprocessingtaskssuchasclassifi-cation.Therefore,toimprovethereliabilityofthefusionprocess,itisimportanttomakeuseofinformationfromthehigher-levelprocessingstagetoenhancetherestorationstage.Fig.4givesasummaryoftheproposedapproach.Forsimplicityweconsiderthefusionofablurredimage
isthecurrentiteration)is
passedthroughtheMRFclassificationmethod.Classificationof
values:
and
and
andisusedtodeterminethepossibilityof
noiseamplificationeffectingthefusionresults.Thismeasureisgivenby
Err
rrrrrrrrrrrrrrrrrerrrrrrrrerrererrKUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERYFig.9.Syntheticimagedatatotestapproach2.Syntheticimagedatatotestapproach2.(a)Blurredimage,(b)noisyimagedegradedbymultiplicativechi-squarednoise,(c)trueclassificationofthescene.Theblack,darkgrey,lightgreyandwhiteshadesdenoteclasses1,2,3,and4,respectively.
Fig.10.ClassificationresultsforApproach2onsyntheticdata.(a)
ClassificationaccuracyversusiterationoftheNAS-RIFalgorithm.(b)Thestoppingcriterionerrorasafunctionofiteration.(c)Restoredimage1atthesixthiterationoftheNAS-RIFalgorithm.(d)Classificationresultforthesixthiteration(correspondstotheresultwiththehighestclassificationaccuracy).
discussedattheendofSectionIV-B1intheformulationof(13)and(14),wecanshowthatthevarianceoftheassociatedaddi-tivenoiseoftherestoredimagecanbeapproximatedas
251
NumberofcorrectlyclassifiedimagepixelsTotalnumberofpixelsintheclassifiedimage
(17)
ormoreformally
isthenumberofpixels
inisthetrueclassification,andif
and
otherwise.Thetrueclassification
Gaussian
PSF14.WhiteGaussiannoiseisaddedtotheresultingimagetoproduceablurredsignal-to-noiseratio(BSNR)of40dB.TheoveralldegradedimageisshowninFig.5(b).TheNAS-RIFal-gorithmisappliedtotheblurredandnoisyimageusinganFIR
filtersizeof
15andassuminganaccuratesupportsizeof252IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
forallclassesandthecovariancematrixwasestimatedusing(13).Thevalueof
(aswas
usedin[5]).ThetworestorationsshowwidelyvaryingCA’s.ClassificationofrestorationIisshowntosignificantlyimproveCAoverthatofclassifyingtheblurredimage;classificationofrestorationII,however,reducestheCAoverthatoftheblurredimage.WhenwefusethetwoimagesusingourfirstapproachweseethattheclassificationaccuracyisfurtherimprovedoverthatofclassifyingrestorationIsolely.Theresultsdemonstratehowtheproposedapproachcanimprovetheclassificationofdegradedimages.TableIIalsoprovidesresultsfortheclassifi-cationofthedegradedimagewithasecondnoisy(butunblurredimage)withanSNRof20dB.16WeseethatourfusionapproachstillimprovesCA,buttheimprovementislessexaggeratedduetothepresenceofthesecondnoisyimage.
Weperformthesamesimulationsonphotographiccolordataofchalk,showninFig.7.Fivedistinctclassesaretobeiden-tified:fourcorrespondtoeachofthecoloredchalkandafifthtothebackground.TheundistortedredbandoftheimageinFig.7(a)isblurredtoproducetheeffectofanout-of-focuscamera.WhiteGaussiannoisewasaddedtotheresulttopro-duceaBSNRof40dB.Therestorationsafterthe1stand11thiterationoftheNAS-RIFalgorithmaredenoted“restorationI”[showninFig.7(c)]and“restorationII”[showninFig.7(d)],respectively.TheNAS-RIFalgorithmwasrunusingaFIRfilter
estimatedfromsizeof
anunblurredgreenbandoftheimage.TheMRFclassificationmethodwasappliedtotheblurredimage,andtheindividualandcombinedrestoredimages.Themeanandvariances(duetotexture)ofeachoftheclasseswereestimatedfromasimilar,butunblurredversionofthescene,and
KUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERY253
TABLEIV
SUMMARYOFCHARACTERISTICSOFTHEPROPOSEDBLINDFUSIONMETHODSFORIMAGECLASSIFICATION
scene(denotedImage2)istobefusedwiththefirsttoproduceanoverallclassificationofthescene.Thesecondimageisun-selecblurred,butsuffersfrommultiplicativechi-squarednoisewitheightdegreesoffreedom.ThetrueclassificationofthesceneisshowninFig.9(c).Thefourdifferentgreylevelsdenotethefourclassesinthescene.
Oursecondapproachwasappliedtoclassifytheimages.AnFIRfiltersizeof
accuratelyestimatedfromImage2wereusedfortheNAS-RIF
algorithmstage.Parametersettingsof
andThresholdestedromhelrredreende2IEEETRANSACTIONSONIMAGEPROCESSING,VOL.09,NO.2,FEBRUARY2000
C.Discussion
AlthoughourfirstapproachoftenimprovesCA,experiencewithsimulationresultsrevealsthatthemethodisnotalwayspre-dictableorsuccessful.Forexample,fusingarestorationwhichproducesahighCAwithonewhichproducesapoorCAcanresultinaslightreductionintheoverallfusedCA.Selectionoftheappropriaterestorationstofuseisanadhocprocedure.Asaruleofthumb,theauthorsobservedthatfusingcomplementaryrestorations(e.g.fusinganimagewhichhasmildnoiseamplifi-cationwithonewhichexhibitsresidualblurring)improvesCAovernonfusedclassification.Inaddition,wefoundthatfusingapoorrestoration(possiblyexhibitingsevereblurringand/ornoiseamplification)witha“good”restorationreducestheCAoverthatofanonfusedclassificationofthe“goodrestoration.”Theauthorsalsoobservedthatifcomplementarynonblurred,butpossiblynoisyinformationofthescenewasavailable,thenthedegreeofimprovementofourfirstapproachwasdiminished.Thecomplementaryinformation,whichcouldbeintheformofanotherimageofthescene,raisedtheoverallCA.However,theimprovementinCAbyfusingtwoormorerestorations(insteadofjustone)withtheadditionalimagerywasreduced;forex-ample,insteadofa1%improvementinCA,a0.1%improve-mentwasfound.
OursecondapproachallowsalgorithmterminationatapointoftheNAS-RIFalgorithmwhichproducesagoodclassificationaccuracy,however,thisisnotalwaysthemostoptimalresult.Inoursimulations,wefoundthatinclusionofcomplementarynonblurredimageryimprovedtheperformanceofthealgorithm(i.e.,amoreoptimalclassificationwasobtained).
Theterminationcriteriaisuser-definedanddependsonthekindsofimagesfusedforclassification.WefoundthroughsimulationsthatthresholdvaluesofErr
KUNDURetal.:ROBUSTCLASSIFICATIONOFBLURREDIMAGERYDimitriosHatzinakos(S’87–M’90–SM’98)receivedtheDiplomadegreefromtheUniversityofThessaloniki,Greece,in1983,theM.A.ScdegreefromtheUniversityofOttawa,Ottawa,Ont.,Canada,in1986andthePh.D.degreefromNortheasternUniversity,Boston,MA,in1990,allinelectricalengineering.
In1990,hejoinedtheDepartmentofElectricalandComputerEngineering,UniversityofToronto,Toronto,Ont.,Canada,whereheisnowatenuredAssociateProfessor.Hisresearchinterestsareinthe
areaofdigitalsignalprocessingwithapplicationstowirelesscommunications,imageprocessing,andmultimedia.Hehasorganizedandtaughtmanyshortcoursesonmodernsignalprocessingframeworksandapplicationsdevotedtocontinuingengineeringeducationandgivennumerousseminarsintheareaofblindsignaldeconvolution.Heisauthor/coauthorofmorethan90papersintechnicaljournalsandconferenceproceedingsandhehascontributedtofourbooksinhisareasofinterest.HisexperienceincludesconsultingtoElectricalEngineeringConsociatesLtd.andcontractswithUnitedSignalsandSystems,Inc.,BurnsandFryLtd.,PipetronixLtd.,DefenseResearchEstablishmentOttawa,andVaytek,Inc.
Dr.HatzinakoshasbeenanAssociateEditorfortheIEEETRANSACTIONSONSIGNALPROCESSINGsince1998andtheGuestEditorforthespecialissueofSignalProcessingonsignalprocessingtechnologiesforshortburstwirelesscommunications.HewasamemberoftheIEEEStatisticalSignalandArrayProcessingTechnicalCommitteefrom1992until1995andTechnicalProgramCo-Chairofthe5thWorkshoponHigher-OrderStatisticsinJuly1997.HeisamemberofEURASIP,theProfessionalEngineersofOntario)andtheTechnicalChamberofGreece.
255
HenryLeung(S’88–M’90)receivedtheB.Math.degreeinappliedmathematicsfromtheUniversityofWaterloo,Waterloo,Ont.,Canada,in1984,theM.Sc.degreeinmathematicsfromtheUniversityofToronto,Toronto,Ont.,Canada,in1985,andtheM.Eng.andPh.D.degreesinengineeringphysicsandelectricalengineeringfromMcMasterUniver-sity,Hamilton,Ont.,in1986and1991,respectively.From1990to1991,hewasaResearchEngineerwiththeCommunicationsResearchLaboratory,Mc-MasterUniversity.In1991,hejoinedtheDefense
ResearchEstablishmentOttawa,wherehewasinvolvedinthedesignofau-tomatedsystemsforairandmaritimemultisensorsurveillance.Since1998,hehasbeenwiththeDepartmentofElectricalandComputerEngineering,Univer-sityofCalgary,Calgary,Alta.,Canada,whereheisnowanAssociateProfessor.HeisalsoanAdjunctProfessorwiththeDepartmentofElectricalEngineering,McMasterUniversity.Hisresearchinterestsincludechaos,computationalin-telligence,datafusion,nonlinearsignalandimageprocessing,multimedia,andwirelesscommunications.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务