2014年内蒙古自治区呼和浩特市中考数学试题(含答案)
题序 一 二 三 四 五 六 七 八 总分 得分
2020年 呼 和 浩 特 市 中 考 试 卷
数 学
注意事项:
1.考生务必将自己的姓名、准考证号填涂在试卷和答题纸的规定位置。
2.考生要将答案写在答题纸上,在试卷上答题一律无效。考试结束后,本试卷和答题纸一并交回。 3.本试卷满分120分。考试时间120分钟。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合
题目要求的) 1.下列实数是无理数的是
A.–1 C.π
B.0 1D.
3
2.以下问题,不适合用全面调查的是
A.旅客上飞机前的安检 C.了解全校学生的课外读书时间
B.学校招聘教师,对应聘人员的面试 D.了解一批灯泡的使用寿命
3.已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为 A.(1,2) C.(5,3)
B.(2,9) D.(–9,–4)
为
4.右图是某几何体的三视图,根据图中数据,求得该几何体的体积
A.60π C.90π
B.70π D.160π
精品试卷
5.某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则最后的单价是
A.a元 C.1.21a元
B.0.99a元 D.0.81a元
6.已知⊙O的面积为2π,则其内接正三角形的面积为 A.33
B.3 6
3
C. 3
2
3
D. 6
2
7.实数a,b,c在数轴上对应的点如下图所示,则下列式子中正确的是
A.ac > bc C.–a <–b < c 8.下列运算正确的是
A.54·2
a b 0 c x
B.|a–b| = a–b D.–a–c >–b–c
13
= 6 22
B.(a3)2 =a3
D.(–a)9÷a3 =(–a)6
b+a1111
C.+ ÷2–2 =
ababb–a
9.已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于错误!未找到引用源。CDE与错误!未找到引用源。ABF判断完全正确的一项为
A.错误!未找到引用源。CDE与错误!未找到引用源。ABF的周长都等于10cm,但面积不一定相
等
B.错误!未找到引用源。CDE与错误!未找到引用源。ABF全等,且周长都为10cm C.错误!未找到引用源。CDE与错误!未找到引用源。ABF全等,且周长都为5cm D.错误!未找到引用源。CDE与错误!未找到引用源。ABF全等,但它们的周长和面积都不能确定
1
的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象|x|
10.已知函数y =
的另外一支上,则关于一元二次方程ax2+bx+c = 0的两根x1,x2判断正确的是
A.x1 + x2 >1,x1·x2 > 0 C.0 < x1 + x2 < 1,x1·x2 > 0
B.x1 + x2 < 0,x1·x2 > 0
D.x1 + x2与x1·x2 的符号都不确定
二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题纸规定的横线上,不
精品试卷
需要解答过程)
11.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为
________.
12.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8. 已知这组数据的平均数是10,那
么这组数据的方差是_________.
13.等腰三角形一腰上的高与另一腰的夹角为36错误!未找到引用源。,则该等腰三角形的底角的度数
为___ __________.
14.把多项式6xy2–9x2y–y3因式分解,最后结果为_________.
15.已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n=_________. 16.以下四个命题:
①每一条对角线都平分一组对角的平行四边形是菱形. ②当m > 0时, y =–mx+1与y =
m
两个函数都是y随着x的增大而减小. x
③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,
3), 则D点坐标为(1,–3).
④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然1后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为 .
8其中正确的命题有_________(只需填正确命题的序号)
三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤) 17.(10分)计算
1–
(1)(5分)计算: 2cos 30°+(3–2)1 +–
2(2)(5分)解方程:
31
– = 0 x2+2xx2–2x
18.(6分)如图,一艘海轮位于灯塔P的北偏东65错误!未找到引用源。方向,距离灯塔80海里的A
处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45错误!未找到引用源。方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)
精品试卷
19.(5分)已知实数a是不等于3的常数,解不等式组
–2x+3≥–3 1, 并依据a的取值情况写出其解集. 1
(x–2a)+ x < 022
20.(9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进
行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.
(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳
绳成绩的一个什么结论?
(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50
名学生的60秒跳绳的平均成绩(结果保留整数);
(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在
同一组的概率.
精品试卷
21.(7分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为
O, 连接DE.
(1)求证:∆ADE≌∆CED; (2)求证: DE∥AC.
22.(7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居
民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?
k23.(8分)如图,已知反比例函数y = (x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其
x
中m>1, AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C. (1)写出反比例函数解析式; (2)求证:∆ACB∽∆NOM;
(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线
的解析式.
精品试卷
24.(8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线
CM.
(1)求证:∠ACM=∠ABC;
(2)延长BC到D,使BC = CD,连接AD与CM交于点E,若⊙O的
半径为3,ED = 2, 求∆ACE的外接圆的半径.
125.(12分)如图,已知直线l的解析式为y = x–1,抛物线y = ax2+bx+2经过点A(m,0),B
2
5
(2,0),D 1, 三点.
4
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E, 延
长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数, 并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定
在PB所在直线上.
精品试卷
2020年 呼 和 浩 特 市 中 考 试 卷
数学参考答案及评分标准
一、选择题
1.C 2.D 3.A 4.B 5.B 6.C 7.D 8.C 9.B 10.C 二、填空题 11.160° 12.1.6 13.63°或27° 14.–y(3x–y)2 15.8 16.① 三、计算题
17.(1)解:原式=2 ×
311
+ + ············································ 3分 223–2
1
= 3–(3+2) + ·················································· 4分
23= – ······································································ 5分
2
(2)解:去分母得
3x2–6x–x2–2x = 0 ··········································································· 1分 2x2 –8x = 0 ······················································································ 2分 ∴ x = 0或x = 4 ················································································ 3分 经检验:x = 0是增根
∴ x = 4是原方程的解 ····································································· 5分 18.解:过点P作PD⊥AB于D ····························································· 1分 由题意知∠DPB = 45° 在RtΔPBD中,sin 45° =
PD
PB
∴ PB=2PD ······················································································· 2分 ∵ 点A在P的北偏东65°方向上 ∴ ∠APD = 25° 在RtΔPAD中
精品试卷
cos 25° =
PD
PA
∴ PD = PA cos 25° = 80 cos 25° ······························································· 5分 ∴ PB = 802 cos 25° ·········································································· 6分
–2x+3≥–3…………………①19.解:1 1
(x–2a)+ x < 0……………②22
解①得:x≤3 ······················································································ 1分 解②得:x < a ······················································································ 2分 ∵ a是不等于3的常数
∴ 当a > 3时,不等式组的解集为x≤3 ···················································· 4分 当a < 3时,不等式组的解集为x < a ···················································· 5分 20.解:(1)中位数落在第四组 ···························································· 1分 由此可以估计初三学生60秒跳绳在120个以上的人数达到一半以上 ··············· 3分 (2)x =
2×70+10×90+12×110+13×130+10×150+3×170
≈121 ······· 6分
50
(3)记第一组的两名学生为A、B,第六组的三名学生为1、2、3 ················· 7分 则从这5名学生中抽取两名学生有以下10种情况: AB,A1,A2,A3,B1,B2,B3,12,13,23 ∴ P =
42
= ··················································································· 9分 105
21.证明:(1)∵ 四边形ABCD是矩形 ∴ AD=BC AB=CD 又∵ AC是折痕
∴ BC = CE = AD ··············································································· 1分 AB = AE = CD ··············································································· 2分 又DE = ED
∴ ΔADE ≌ΔCED ············································································· 3分 (2)∵ ΔADE ≌ΔCED ∴ ∠EDC =∠DEA
精品试卷
又ΔACE与ΔACB关于AC所在直线对称 ∴ ∠OAC =∠CAB 而∠OCA =∠CAB
∴ ∠OAC =∠OCA ·············································································· 5分 ∴ 2∠OAC = 2∠DEA ··········································································· 6分 ∴ ∠OAC =∠DEA
∴ DE∥AC ························································································ 7分 22.解:设基本电价为x元/千瓦时,提高电价为y元/千瓦时 ························ 1分 由题意得:
180x+150y=213
··········································································· 3分 180x+60y =150
x=0.6解之得: ·················································································· 4分
y=0.7
∴ 4月份的电费为:160×0.6=96元
5月份的电费为:180×0.6+230×0.7 = 108+161 = 269元
答:这位居民4、5月份的电费分别为96元和269元. ································ 7分 k
23.解:(1)∵ y = 过(1,4)点
x
4
∴ k = 4,反比例函数解析式为y = ······················································ 1分
x(2)∵ B(m,n) A(1,4)
∴ AC = 4–n,BC = m–1,ON = n,OM = 1 ············································ 2分 4–nAC4∴ = = –1 ONnn4而B(m,n)在y = 上
x4
∴ = m nAC
∴ = m–1 ON而
m–1BC = OM1
ACBC∴ = ···················································································· 4分 ONOM
精品试卷
又∵ ∠ACB =∠NOM = 90°
∴ ΔACB∽ΔNOM ············································································· 5分 (3)∵ ΔACB与ΔNOM的相似比为2 ∴ m–1 = 2 ∴ m = 3
4∴ B点坐标为(3,) ········································································· 6分
3设AB所在直线的解析式为y = kx+b 43 = 3k+b∴ 4 = k+b416∴ k = – b =
33
416
∴ 解析式为y = – x+ ··································································· 8分
3324.证明:(1)连接OC ······································································ 1分 ∵ AB为⊙O的直径 ∴ ∠ACB = 90°
∴ ∠ABC +∠BAC = 90° 又∵ CM是⊙O的切线 ∴ OC⊥CM
∴ ∠ACM +∠ACO = 90° ································································· 2分 ∵ CO = AO ∴ ∠BAC =∠ACO
∴ ∠ACM =∠ABC ·············································································· 3分 (2)∵ BC = CD ∴ OC∥AD 又∵ OC⊥CE ∴ AD⊥CE
∴ ΔAEC是直角三角形
∴ ΔAEC的外接圆的直径为AC ····························································· 4分
精品试卷
又∵ ∠ABC +∠BAC = 90° ∠ACM +∠ECD = 90° 而∠ABC =∠ACM ∴ ∠BAC =∠ECD 又∠CED =∠ACB = 90° ∴ ΔABC∽ΔCDE ABBC∴ = CDED而⊙O的半径为3 ∴ AB = 6 6BC∴ = CD2∴ BC2 = 12
∴ BC = 23 ······················································································ 6分 在RtΔABC中 ∴ AC =
36–12 = 26 ····································································· 7分
∴ ΔAEC的外接圆的半径为6 ····························································· 8分 25.解:(1)∵ y = ax2+bx+2经过点B、D
4a+2b+2 = 0 ∴ 5
a+b+2 = 4
11
解之得:a =–,b =–
42
11
∴ y =– x2 – x+2 ··········································································· 2分
42∵ A(m,0)在抛物线上 11
∴ 0 =– m2 – m+2
42解得:m =–4
∴ A(–4,0) ·················································································· 3分 图像(略) ························································································· 4分 1
(2)由题设知直线l的解析式为y = x–1
2
精品试卷
1
∴ S = AB·PF
21
= ×6·PF
2
111
= 3(– x2 – x+2+1– x) ······················································ 5分
4223
= – x2 –3x+9
4
3
= –(x+2)2 +12 ······································································ 6分
4其中–4 < x < 0 ···················································································· 7分 ∴ S最大= 12,此时点P的坐标为(–2,2) ·············································· 9分 (3)∵ 直线PB过点P(–2,2)和点B(2,0)
1
∴ PB所在直线的解析式为y =– x+1 ················································· 10分
211
设Q(a, a–1)是y = x–1上的任一点
221
则Q点关于x轴的对称点为(a,1– a)
2
11
将(a,1– a)代入y =– x+1显然成立 ·············································· 11分
22∴ 直线l上任意一点关于x轴的对称点一定在PB所在的直线上 ···················· 12分 注:本卷中各题如有不同解法,可依据情况酌情给分。
友情提示:
一、认真对待每一次考试。
二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!
因篇幅问题不能全部显示,请点此查看更多更全内容