您好,欢迎来到华佗健康网。
搜索
您的当前位置:首页亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展

亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展

来源:华佗健康网
中国抗生素杂志2018年l1月第43卷第11期 1321 文章编号:1001—8689(2018)11—1321—11 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展 谷宇锋 王淑歌 郝海红 戴梦红 王旭 程古月 , 袁宗辉 ,  ,(1华中农业大学农业部畜禽产品质量安全风险评估实验室,武汉430070: 2国家兽药残留基准实验室(HzAu)/农业部兽药残留检测重点实验室,武汉430070) 摘要:细菌的耐药性和毒力是决定抗生素治疗成败的关键。近年来研究表明亚抑菌浓度抗生素可以诱导细菌耐药并影响细 菌的毒力。本文介绍了亚抑菌浓度抗生素产生的来源;阐述了亚抑菌浓度抗生素对细菌耐药性和毒力的影响。亚抑菌浓度抗生 素对细菌耐药性的影响涉及了细菌的耐药选择性、生物被膜和持留菌的形成、基因突变、水平基因转移和基因表达;对细菌毒 力的影响主要包括细菌的黏附性、运动性和其它毒力因子。以期为畜牧生产中减少和避免亚抑菌浓度抗菌药的产生,减缓和克 服细菌耐药性,降低致病菌的毒力提供参考。 关键词:亚抑菌浓度;抗生素;耐药性;毒力 中图分类号:R978.1 文献标志码:A Effects of sub-inhibitory concentration of antibiotics on bacterial resistance and virulence:A review Gu Yu—feng ,Wang Shu—ge ,Hao Hai—hong ,Dai Meng—hong ,Wang—Xu ,Cheng Gu—yue and Yuan Zong—hui , (1 MOALaboratoryforRiskAssessmentofQualityandSafetyofLivestock andPoultryProducts(HZAU),Wuhan430070; 2 National Reference Laboratory ofVeterinay rDrug Residues(HZAU)and MOA Key Laboratory for Detection ofVeterinay rDrug Residues,Wuhan 430070) Abstract Antibacterial resistance and bacterial virulence is the keY factor to determine the treatment efrect Of antibioticsis the determinant of whether the bacteria can infect the host.In recent years.the problem of antibacteria1 resistance has been paid attention,and the virulence of bacteria also causes widespread concern.The origins of sub— inhibitory concentration of antibiotics were introduced in this Paper.Influences of sub—inhibitory concentration of antibiotics on the bacterial resistance and virulence were summarized.The effects of the sub—ihinbitory concentration of antibiotics on bacterial resistance is related to the selective resistance,bio.film formation,persisters,gene mutation, horizontal gene transfer and gene expression.The eriects of the sub—ihinbitory concentration of antibiotics on bacterial viulence werre also described,such as bacterial adhesion,motility and other viulrence factors.This review aims to deliver the knowledge on the theoretical basis for reducing and avoiding the emergence of drug resistance regarding the sub—ihinbitory concentration in livestock production.to slow down and overcome drug resistance and to reduce the virulence of pathogenic bacteria. Kev words Sub—inhibitory concentration;Antibiotic;Resistance;Virulence 收稿日期:2017.12—13 基金项目:十三五国家重点研发计划食品安全关键技术研发(No.2017YFC16o01o0),国家自然科学基金(No.31502115),湖北省自然科学 基金(No.2017CFB445),高校基本科研业务费(No.2662017JC034) 作者简介:谷宇锋,男,生于1989年,在读硕士研究生,E—mail:78489858@qq.tom 通讯作者:袁宗辉,E—mail:yuan5802@mail.hzau.edu.cn;程古月,E—mail:chengguyue@mail.hzau.edu.cn 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展 谷宇锋等 畜牧生产中经常会产生低于抑菌浓度的抗生素 环境,且能够诱导细菌产生耐药性…。近年来相继报 道许多抗生素在亚抑菌浓度下会影响细菌的生命活 MIC)的情况,即亚抑菌浓度。这是因为药物本身动 力学造成其在组织器官中达不到MIC浓度。与此同 时,人类疾病治疗给药方案不佳和畜牧生产中助生 长或预防剂量的抗生素的使用也是亚抑菌浓度出现 的重要来源【l2】。细菌、真菌和植物生产的天然抗生 动,改变细菌的形态 和细菌群落的结构【 1以及影响 细菌的耐药性等【4. 。同时亚抑菌浓度的抗生素也会 影响细菌的毒素产生、黏附性、运动力等而影响细 菌的毒力【 {]。在细菌适应亚抑菌浓度抗生素的过程 中,其生态特性也会发生适应性的改变,呈现出多 素及使用过抗菌药的动物尸体及排泄物也会导致环境 (如水体、土壤)和畜牧产品中亚抑菌浓度抗菌剂的存 在。此外医院等疾病治疗机构和药品生成企业废弃物 态性【9j。某些细菌对亚抑菌浓度抗生素的适应和进 化的代价很低甚至没有代价,如抗丝氨酸链霉菌在 亚抑菌浓度的链霉素作用下进化没有适应代价【l0】。 目前对于感染性疾病的治疗首选药还是抗生素,它 的广泛应用使得细菌耐药性日益严峻。然而传统抗 菌药物的研发己进入瓶颈期,抗菌疫苗、微生态 的排放也是产生亚抑菌浓度抗菌剂的原因(图1)。 2亚抑菌浓度抗生素对细菌耐药性的影响 细菌耐药性又称细菌抗药性,系指细菌对于抗 菌药物作用的耐受性。耐药性根据其发生原因可分 为天然性耐药和获得性耐药。抗菌药耐药性包括两 个水平的耐药,即群体水平的耐药和细胞水平的耐 制剂、植物提取物等因其局限性尚不能完全替代 抗生素…】,未来相当长一段时间,抗生素仍是动物 和人健康的重要保证。细菌耐药性使抗菌药的疗效 药【I3J。群体水平的耐药是指与生物膜以及持留菌形 成等引起的耐药现象,细胞水平的耐药是由基因突 变以及通过水平基因转移等导致的耐药。亚抑菌浓 度抗生素影响细菌耐药的群体水平和细胞水平以及 降低,剂量加大,疗程延长。耐药菌株携带的耐药 性基因可能会在动物与动物之间、动物与人之间转 移,对人类健康造成潜在威胁。致病菌的毒力是左 细菌的耐药进化过程等[I4】。 2.1 亚抑菌浓度抗生素对细菌群体水平耐药的影响 2.1.1 亚抑菌浓度抗生素的耐药选择性 抗生素对耐药菌具有选择作用,也能够诱导新 的耐药菌的产生。将野生敏感菌和同源的耐药大肠 埃希菌以1:1的数量混合(图2),没有药物作用时由 右其入侵宿主的关键因素,很大程度上决定细菌的致 病性。故本文从细菌耐药性和毒力的角度出发,阐明 亚抑菌浓度抗生素对细菌耐药性和毒力的影响。 1亚抑菌浓度抗生素产生的来源 抗生素大量普遍的应用于畜禽疾病的预防、治 疗和助生长等方面,临床使用中经常会出现浓度 低于最小抑菌浓度(minimal inhibitory concentration, 药企废弃物 于耐药菌适应性下降,导致耐药菌和敏感菌的数 量比小于l;随着药物浓度升高,耐药菌和敏感菌 的比值也逐步增大;当耐药菌和敏感菌的比例为1 医疗机构废弃物 ■ // 一点.--■Ij一■_一一、、 、 \. 天 然 抗 生 素 动物尸体及排泄物 图1 亚抑菌浓度抗生素产生的来源 Fig.1 The origin of sub—inhibitory concentration of antibiotics 中国抗生素杂志2018年11N第43卷第11期 时,此时的药物浓度即为最小选择浓度(MSC),该浓 度一般远小于敏感菌的MSC,是中和耐药决定因子 适应性代价的最小浓度f15]。MSC根据耐药因子不同, 为敏感菌MIC的几十分之一到几百分之一不等ll61。 例如链霉素rpsL105耐药菌的MSC为1/4xMIC;环 丙沙星gyrA(Asp87Asn)、AmarR ̄[1AacrR耐药菌的 MSC为1/1OxMIC,而gyrA(Ser83Leu)耐药菌的MSC 为1/230 ̄MIC;四环素tnl0耐药菌的MSC为1/1OOx MIC[1 51。研究者利用小鼠和斑马鱼胚胎模型证实了 低浓度抗生素可在动物体内选择富集耐药细菌[17], 表明亚抑菌浓度的抗菌药会富集预先存在的耐药 菌。持续作用(600代)的亚抑菌浓度抗生素还可以诱 导新的耐药菌产生。例如以1/4AMIC的链霉素作用 于20个的鼠伤寒沙门菌世系,传代400代以后20 个世系的细菌亚群(数量超过1%)的MIC值均达N8倍 野生型MIC,传代600代以后14个世系的细菌亚群的 MIC值达到16倍的野生型MIC;以1/10AMIC环丙沙 星作用20个的大肠埃希菌世系,传代500代后有 5个世系的细菌亚群MIC达到野生型MIC的2~6倍【J5】。 亚抑菌浓度耐药选择是逐步累积的,其所诱导的耐 药突变适应性代价较低,MSC实际上是适应性代价 的函数,适应性代价小的耐药菌其MSC也较低ll6】。 2.1.2亚抑菌浓度抗生素对细菌生物被膜的影响 抗生素对细菌生物被膜的影响生物被膜是细 菌黏附于非生物或生物表面后将自身包裹在其分泌 的多聚物中形成的细胞群落,这一过程受到细菌群 体感应系统的【"]。生物被膜对细菌的生存非常 重要,它是细菌形成耐药性的重要机制之一。亚抑 菌浓度抗生素可以影响细菌生物被膜形成(表1),亚 MICsusc为敏感株的最小抑制浓度;MlCres为抗药株的最小抑制浓度 图2亚抑菌浓度抗生素对细菌的耐药选择性[15] Fig.2 Drug-resistant selectivity by sub—inhibitory concentrations of antibioticstlSl 1323 抑菌浓度抗生素既可以诱导生物被膜的形成也可以 抑制生物被膜的产生,且不同的抗生素作用于同一 细菌,有的抗生素促进生物被膜形成,有的抗生素 则表现为抑制生物被膜的形成;同一抗生素作用于 不同的细菌,有的细菌生物被膜形成增加有的则减 少。目前亚抑菌浓度抗生素对细菌生物被膜的影响 机制并没有完全弄清楚,有待进一步研究。 2.1.3亚抑菌浓度抗生素对持留菌的影响 持留菌是某个细菌群体中一定比例表型异化的 小亚群,表现为临时休眠状态或缓慢生长状态[47】。 其可耐受致死浓度抗菌药物的作用,但这种抗菌药 物耐受性不能遗传。持留菌与生物膜的形成以及细 菌的耐药性密切相关。研究表明亚抑菌浓度抗生素 增加细菌的持留性,暴露于亚抑菌浓度的环丙沙星 下持留菌的数目会增加【48]。研究还表某些持留菌的 形成依赖于SOS反应的诱导[ 。持留菌在临床上的意 义是导致病原菌的清除率降低,并潜在增加可遗传 的耐药突变株【sm。 2.2亚抑菌浓度抗生素对细菌细胞水平耐药的影响 2.2.1 亚抑菌浓度抗生素对细菌耐药突变的影响 抑菌浓度抗生素选择出的耐药菌通常是高水平 耐药突变,而亚抑菌浓度抗生素不能使细菌死亡, 但可以影响细菌的突变频率[s 】、水平基因转移[521 ̄D重 组[s ],扩增已有的低水平耐药突变或者提供高水平耐 药突变的机会【s 。研究表明亚抑菌浓度的杀菌药(如 氟喹诺酮类、氨基糖苷类和B一内酰胺类)能上调G因子 rpoS的翻译,使sRNA; ̄DsdsR水平升高,抑 ̄1]mutS的 mRNA转录,使MutS蛋白合成减少,引起DNA修复 系统失活,导致细菌更容易产生突变【s 。在亚致死水 平的0.内酰胺和氨基糖苷类抗生素的诱导下,金黄色 葡萄球菌突变频率都升高。D一内酰胺抗生素使突变频 率增加了14倍,氨基糖苷类增加了3倍的突变频率, 表明暴露于亚致死浓度抗生素期间导致突变频率增 加,可以促进病原菌的环境适应性[56]。铜绿假单胞 菌暴露于1/10 MIC的卡那霉素、四环素或环丙沙星 下,可以产生新的耐药突变【s 。亚抑菌浓度水平的 环丙沙星和链霉素使所有肺炎链球菌分离株的突变 频率提高2~5倍不等,甲氧苄啶增加部分菌株的突变 频率,氨苄西林和红霉素对其突变频率没有显著影 响[58】。I/2 MIC和I/4 MIC环丙沙星作用下,大肠埃希 菌耐受环丙沙星突变频率会增 ̄N[591。亚抑菌浓度的 万古霉素会诱导金黄色葡萄球菌walK基因突变_60]。 1324. 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展谷宇锋等 妥布霉素 替加环素、苯唑西林 头孢噻肟 美罗培南、多利培南 亚安培南 恩诺沙星 铜绿假单胞菌、大肠埃希菌 表皮葡萄球菌 流感嗜血菌 诱导生物被膜形成 诱导生物被膜形成 生物被膜形成减少 生物被膜形态抑制 生物被膜形成抑制 肺炎克雷伯菌 脆弱拟杆菌 脆弱拟杆菌 生物被膜形成增加 青霉素G 头孢洛林 红霉素 胸膜肺炎放线杆菌 耐甲氧西林金黄色葡萄球菌 诱导生物被膜形成 生物被膜形成增加 生物被膜形成增加 生物被膜形成增加 生物被膜形成抑制 生物被膜形成增加 表皮葡萄球菌 金黄色葡萄球菌、铜绿假单胞菌 大肠埃希菌 绿脓假单胞菌 铜绿假单胞菌 诺氟沙星 头孢噻肟 红霉素、罗红霉素 卡那霉素 红霉素 泰乐菌素 环丙沙星、头孢他啶 阿莫西林、头孢噻肟 头孢氨苄 诱导生物被膜形成 抑制生物被膜形成 抑制生物被膜形成 链球菌 猪链球菌 奇异变形菌 单核细胞增生李斯特菌 金黄色葡萄球菌 化脓性链球菌 生物被膜完全破坏 生物被膜形成增加 诱导生物被膜形成 抑制生物被膜形成 生物被膜形成增加 生物被膜形成抑制 生物被膜形成抑制 生物被膜形成增加 生物被膜形成抑制 生物被膜形成增加 生物被膜形成减少 生物被膜形成减少 环丙沙星、氧氟沙星、左氧氟沙星、诺氟沙星 头孢噻肟、阿莫西林、阿奇霉素 环丙沙星 铜绿假单胞菌 铜绿假单胞菌 杆状核梭菌 氨苄西林、氨苄西林/舒巴坦、哌拉西林/巴坦 克林霉素、氯霉素、左氧氟沙星 头孢布烯 卡那霉素 环丙沙星、阿米卡星、多黏菌素 杆状核梭菌 奇异变形菌、大肠埃希菌 紫色杆菌 大肠埃希菌 金黄色葡萄球菌 表皮葡萄球菌 铜绿假单胞菌 流感嗜血菌 氧氟沙星、左氧氟沙星 万古霉素、替加环素、新生霉素 头孢他啶 阿奇霉素 环丙沙星、头孢他啶 左氧氟沙星 诱导生物被膜形成 生物被膜形成抑制 生物被膜形成抑制 生物被膜形成减少 生物被膜形成增加 铜绿假单胞菌 铜绿假单胞菌 长时间暴露在1/4 MIC的环丙沙星下,铜绿假单胞菌 的gyrA和gyrB基因会产生突变,细菌群体中出现具 有高水平环丙沙星抗性的突变体【6l】,并且对D一内酰胺 1/3MIC和1/4MIC)的利福平和链霉素的结核分枝杆菌 浓度的利福平下,外排泵基因的表达水平也较高, H37Rv,外排泵基因的表达表现出差异性。在较低 抗生素有交叉耐药性[ z】。亚抑菌浓度的青霉素作用 下,肺炎链球菌的抗性基因atpAC ̄rpoB突变频率显 著增加I63】。 但在链霉素的存在下,随着药物浓度的增加,外排基 用下水体样本中,喹诺酮抗性基因qnrS丰度增加【66]。 性,方式也不同,影响的结果也具有差异性。 因的表达水平降低[ 。在亚抑菌浓度的环丙沙星的作 2.2.2亚抑菌浓度对细菌耐药基因表达的影响 亚抑菌浓度抗生素能影响细菌耐药基因的表达 (表2),亚抑菌抗生素使群体感应启动子激活lux基 亚抑菌浓度抗生素对细菌耐药基因表达的影响呈多样 2.2.3 亚抑菌浓度对细菌水平基因转移的影响 一因,对细菌基因的转录进行调节[64],从而细菌 基因的表达。暴露于不同亚抑菌药物浓度(1/2MIC, 些抗菌药物如氟喹诺酮类可以引起细菌的 SOS反应、引起可移动元件的转移(通常携带耐药和 中国抗生素杂志2018年l1月第43卷第l1期 1325 毒力因子1、激活重组酶,为水平基因转移和重组提 供了条件f69】。亚抑制浓度的环丙沙星为大肠埃希菌 的基因重组以及水平基因转移创造环境,从而促进 基因重组和水平转移,进而丰富耐药菌群[70】。研究 孢氨苄、环丙沙星和罗红霉素影响金黄色葡萄球菌 凝固酶和毒性休克综合征毒素1等毒力影响因素,导 致致病菌毒力的改变[76】。亚抑菌浓度抗生素通过对 细菌各种毒力因素的影响,改变细菌的毒力水平, 进而调节其致病性。 发现亚抑菌浓度的四环素压力下,有利于大肠埃希 菌的多重耐药决定子水平基因的转移[ ”。 亚抑菌浓度抗生素对细菌群体水平耐药的影响 主要是增大耐药菌的抗生素浓度范围,对耐药菌进 行富集;改变生物膜的形成量以及增加持留菌的数 目。对细菌细胞水平耐药的影响表现为提高耐药基 因的突变频率、增强耐药基因的表达和水平基因的 转移等。现有研究表明,亚抑菌浓度抗生素可以诱 导细菌产生耐药性并对耐药菌进行富集。 3.1 亚抑菌浓度抗生素对细菌黏附性的影响 亚抑菌浓度抗生素对细菌黏附性的影响具有差异 性,不同的抗生素和细菌表现不同(表3)。亚抑菌浓 度的环丙沙星通过上调。因子SigB和诱导SOS反应增 加纤连蛋白结合蛋白的表达,从而增强金黄色葡萄球 菌对宿主的黏附性『77]。在亚抑菌浓度的奈替米星的作 用下假单胞菌对细胞的黏附显著降低,葡萄球菌黏附 力略有减少【,s】。1/4MIC氨苄西林降低肠球菌的黏附 3亚抑菌浓度抗生素对细菌毒力的影响 毒力在医学微生物学中的定义是指病原体对宿 主的伤害或使宿主患病的能力,包括细菌毒素、胞 力,1/8MIC万古霉素增强肠球菌的黏附作用[ 。 3.2 亚抑菌浓度抗生素对细菌运动性的影响 亚抑菌浓度的抗生素对细菌表面的鞭毛等产生 影响,而改变细菌的运动力f表41。如亚抑菌浓度的 万古霉素、四环素、氨苄西林和阿奇霉素能明显增 外酶、黏附、运动性、分泌系统等毒力因素[72]。亚 抑菌浓度的哌拉西林/巴坦影响氧化应激结合反 应等毒力因素,降低了大肠埃希菌的毒力【 ,]。一种 新型的半合成硫肽LFF571,在亚抑菌浓度下能减少 艰难梭状芽胞杆菌的毒素产生[ 钔。在亚抑菌浓度的 氧氟沙星和红霉素的作用下,能增强空肠弯曲菌产 细胞致死毒素的能力[75】。研究发现亚抑菌浓度的头 强铜绿假单胞菌的运动力[87]。在加替沙星浓度低至 1/8MIC时,金黄色葡萄球菌和大肠埃希菌的运动性 降 ̄[841。亚抑菌浓度对细菌运动力的影响有多种方 式和途径,产生的作用也具有差异性。 3-3 亚抑菌浓度抗生素对细菌其它毒力因子的影响 表2部分亚抑菌浓度抗生素对细菌耐药基因表达的影响 Tab.2 Effect of some sub—inhibitory concentrations of antibiotics on the expression ofbacterial resistance genes 表3亚抑菌浓度抗生素对细菌黏附性的影响 Tab.3 The effects of sub—inhibitory concentrations of antibiotics on bacterial adhesion 1326 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展谷宇锋等 亚抑菌浓度的抗生素可以影响细菌毒力基因的 附性,某些抗生素却能减弱部分细菌的黏附性;大 部分抗生素对细菌的运动性的影响表现为抑制作 用。在亚抑菌浓度抗生素的作用下,细菌的相关毒 表达(表5),实现对细菌毒力的。如四环素、克 林霉素等在亚抑制浓度下显著增加关键的毒力调节 因子agr的表达,增加耐甲氧西林金黄色葡萄球菌中 的酚可溶性调节蛋白细胞溶素的生产【 ]。B一内酰胺类 抗生素上调金黄色葡萄球菌 一毒素基因hla的表达, 氨基糖苷类抗生素下调hla:lacZ基因的表达[96]。赖氨 酸类肽杂合体LP5在生理条件下抑制 和RNAIII的 转录以及诱导spa的转录,从而调节金黄色葡萄球菌 毒力基因的表达[卯]。 力基因的表达也会受到影响,不同的抗生素对不同 的细菌作用效应不同,有的抗生素升高了毒力基因 的表达水平,有的抗生素则抑制了毒力基因的表 达。故亚抑菌浓度抗生素对细菌毒力的影响是既可 以增强细菌毒力也能减弱细菌的毒力,这两方面都 是有可能的。 4展望 亚抑菌浓度抗生素对细菌毒力影响的研究主要 有黏附性、运动性、毒索以及其他毒力因子等几个 亚抑菌浓度的抗生素能诱导细菌形成耐药性已 是不争的事实,同时亚抑菌浓度抗生素也会影响细 方面。现有研究表明亚抑菌浓度抗生素既能促进毒 素产生也能抑制毒素的产生;对于细菌的黏附性也 表现为两个方面,有的抗生素能增强部分细菌的黏 菌的毒力。但对于亚抑菌抗生素的研究尚未系统 化,也存在不少问题。许多文献报道了亚抑菌浓度 抗生素对细菌生物被膜的影响,但并没有阐述其机 表4亚抑菌浓度抗生素对细菌运动力影响 Tab.4 Effect of sub-inhibitory concentrations of antibiotics On bacterial motility 表5亚抑菌浓度抗生素对细菌毒力基因表达的影响 Tab.5 The effect of sub—inhibitory concentrations of antibiotics on bacterial virulence gene expression 中国抗生素杂志2018年11月第43卷第1l期 制,且研究的细菌种属并不广泛。对于亚抑菌浓度抗 生素对细菌群体感应系统的影响的文献相对较少。今 后开展亚抑菌浓度抗生素对细菌生物被膜机制的研究 将会是重点。有研究表明低浓度的抗生素还可以作为 细菌种内或种间的信号分子[106],而群体感应对于细 菌群体水平的生物膜形成、毒力和代谢等有非常重要 的影响[J0 109],故展开亚抑菌浓度抗生素、细菌群体 感应、细菌耐药和细菌毒力的关系也是耐药研究一个 重要的方向。对于细菌耐药性和毒力之间的关系,目 前并没有文献报道细菌在亚抑菌浓度抗生素的作用下 增强了耐药性,其毒力增强或者减弱。故对于耐药性 和毒力之间的关系有待进一步研究。 参考文献 【1] Stolker A A,Manti V'Zuidema T,et a1.Carry—over of veterinary drugs from medicated to non.medicated feeds in commercial feed manufacturing plants[J].Food Additi Contam,2013,30(6):1l00一l1O7. [2] Atkinson B A,Amaral L,Washington J A.Sublethal concentrations of antibiotics.effectS 0n bacteria and也e immune system[J].Crc Crit Rev Microbiol,1982,9(2):101—138. 【3] Lillicrap A,Macken A,Wennberg A C,et a1.Environmental fate and effects of novel quorum sensing inhibitors that carl control biofilm formation[J].Chemosph,2016,164:52—58. [4】 He S,Gallert C.Growth Behavior of E.coli,Enterococcus and Staphylococcus species in the presence and absence of sub—inhibitory antibiotic concentrations:Consequences for interpretation ofculture—based data[J].MicrobialEcol,2016, 72(4):1-11. 【5] Roch M,Clair P,Renzoni A,et a1.Exposure of Staph) lococcus ablreus to subinhibitory concentrations of beta—-lactam antibiotics induces heterogeneous vancomycin·- intermediate Staphylococcus aureus[J].Antimicrob Agents Chemother,2014,58(9):5306—5314. 【6] Jorgensen K M,Wassermann L Jensen P 0,et a1.Sublethal ciprofloxacin treatment leads to rapid development of high— level ciprofloxacin resistance during long·term experimental evolution ofPseudomonas aeruginosa[J].Antimicrob Agents Chemother,2013,57(9):4215-4221 [7] Dal Sasso M,Culici M,Bovio C,et a1.Gemifloxacin: Effects of sub—inhibitory concentrations on various factors affecting bacterial virulence[J]./nt J Antimicrob Agents, 2003,2 l(4):325—333. [8] Dal Sasso M,Bovio C,Culici M,et a1.Interference of sub—inhibitory concentrations of gatilfoxacin on various determinants of bacterial viurlence[J].J Chemother,2002, 14(5):473—482. 1327 [9] Friman V Guzman L M。Reuman D C,et a1.Bacterial adaptation to sublethal antibiotic gradients can change the ecological properties of multitrophic microbial communities[J].Proc Biolog Sci,2015,282(1806): 20 142920. [10] Westhoff S,Leeuwe T M Qachach O,et a1.The evolution of no.cost resistance at sub—MIC cOncentrations of streptomycin in Streptomyces coelieolor[J].Isme 2016, 11(5):1168—1178. Cheng G Hao H H,Xie S et a1.Antibiotic alternatives: The substitution of antibiotics in animal husbandry[J].Front Mierobiol,2014,5(2):217—231. [12] Hao H H,Cheng G Y'Iqbal Z,et a1.Benefits and risks of antimicrobial use in food—producing animals[J].Front Microbiol,2014,5(7):288·298. [13] Cheng G,Dai M,Ahmed S,et a1.Antimicrobial drugs in ifghting against natimicrobial resistance[J].Front Microbiol, 2016.7:832—842. 【14】 Cairns J,Becks L,Jalasvuori M,et a1.Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution[J].Philos Trans R Soc Lond B BiolSci,2017,372(1712):20160040. [15】 Erik G,Sha C,Otto G B,el a1.Selection of resistant bacteria at very low antibiotic concentrations[J].PLoS Pathogens, 2011,7(7):e1002158. [16] Andersson D I.Hughes D.Evolution of antibiotic resistance at non-lethal drug concentrations[J].Drug Resist Updates, 2012,15(31:162—172. [17】 程古月,郝海红,戴梦红,等.病原菌的群体感应及其抑制 剂的研究进展[J].科学通报,2012,57(21):1964—1977. [18】 Hoffman L R,D’argenio D A,Maccoss M J,Pf日,. Aminoglycoside antibiotics induce bacterial biofilm formation[J].Nature,2005,436(7054):l171—1175. [19】 Weiser J,Henke H A,Hector N,et a1.Sub—inhibitory tigecycline cOncentratiOns induce extracellular matrix binding protein Embp dependent Staphylococcus epidermidis biofilm formation and immune evasion[J]./nt J MedMicrobiol,2016,306(6):471—478. [20] Sudarat B,Sutthirat S,Duangkamol K.In vitro interference of cefotaxime at subinhibitory concentrations on biofilm formation by nontypeable Haemophilus inlfuenzae[J].Asian PaciifcJTropBiomed,2016,6(9):745-750. 【21】 Van LaarTA Chen You eta1.Sublethal concentrations of carbapenems alter cell morphology and genomic expression ofKlebsiellapneumoniae biofilms[J].Antimicrob Agents Chemother,2015,59(3):1707—1717. [22] Silva J O,Martins Reis A C,Quesada—G6mez C,et a1. In vitro effect of antibiotics on biofilm formation by Bacteroides fragilis group strains isolated from intestinal 1328 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展谷宇锋等 microbiota of dogs and their antimicrobial susceptibility[J]. Anaerobe,2014,28C:24—28. [23]Hathroubi S,Fontaine—Gosselin S E,Tremblay Y D N,et a1.Sub— inhibitory concentrations ofpenicillin G induce biofilm formation by ifeld isolates of Actinobacillus pleuropneumoniae[J].Veterin microbiol,2015.179(3—4):277-286. [24]Molina—Quiroz R C,Silva C A,Molina C F,et a1.Exposure to sub-inhibitory concentrations of cefotaxime enhances the systemic colonization of Salmonella Typhimurium in BALB/c mice[J].Open Biol,2015,5(10):pii:150070. [25】He H J,Sun F J,Wang Q,et a1.Original article: Erythromycin resistance features and biofilm formation affected by subinhibitory erythromycin in clinical isolates of Staphylococcus epidermidis[J].J Microbiol Immunol Infect, 2014,49(1):33-40. [26】Kumar A,Ting Y P Effect of sub—inhibitory antibacterial stress on bacterial surface properties and biofilm formation[J].Coll SurfB Bioint,2013,1 1 1(6):747-754. [27]Balagu6 C,P6rez J,Rinaudo M,et a1.Inhibition of the adhesion to catheters of uropathogenic Escherichia coli by sub—inhibitory concentrations of cefotaxime[J].Eur J Obstet GynecolReprodBiol,2011,155(2):150—156. f28]Bruchmann J,Kirchen S,Schwartz T.Sub—inhibitory concentrations of antibiotics and wastewater influencing biofilm formation and gene expression of multi-resistant Pseudomonas aeruginosa wastewater isolates[J].Environ Sci PollRes,2013,20(6):3539-3549. [29]Jones C,Allsopp L,Horlick J,et a1.subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system[J].PloS one,2013, 8(11、:e81132. 『30]Martinez J L.Drug resistance:General principles of antibiotic resistance in bacteria[J].Drug Discov Today: Technol,2014,1 1:33-39. 【31]Wang S,Yang Zhao et a1.Sub—MIC Tylosin Inhibits Streptococcus suis biofilm formation and results in diferential protein expression[J].Front Microbiol,2016,7: 384—392. 【32]Kwiecfiskapir6g J,Skowron K,Zniszczol K,et a1.The assessment ofProteus mirabilis susceptibility to ceftazidime and ciprofloxacin and the impact of these antibiotics at subinhibit0ry concentrations on Proteus mirabilis biofilms[J].Bio MedRes lnt,2013,2013(6):930876. 【33]Nguyen U T,Harvey H,Hogan A J,et a1.Role of PBPD 1 in stimulation of listeria monocytogenes biofilm formation by subminimal inhibitory 3-lactam c0ncentrations[J】. AntimicrobAgen ̄Chemother,2014,58(11):6508-6517. 『341 Haddadin R N,Saleh S,Adham I S,et a1.The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms[J].JApplMicrobiol,2010,108(4):1281-1291. [35]Balaji K,Thenmozhi R,Pandian S K.Effect of subinhibitory concentrations of nuorOquinol0nes on biofilm production by clinical isolates of Streptococcus pyogenes[J].Ind J Med Res,2013,137(5):963-971 [36]Aka S T_Haji S H.Sub—M1C of antibiotics induced biofilm formation of Pseudomonas aeruginosa in the presence of chlorhexidine[J].Brazil J Microbioh Publ Brazil Soci Microbiol,2015,46(1):149-154. 『371 De Souza Filho J A,Diniz C G,Barbosa N B,el a1.Clinical microbiology:Morphological,biochemical,physiological and molecular aspects of the response of Fusobacterium nucleatum exposed to subinhibitory concentrations of natimicrobials[J].Anaerobe,2012,l8(6):566-575. [38]Maioli E,Marchese A,Roveta S,el a1.In vitro activiyt of ceftibuten at sub—inhibitory concentrations in comparison with other antibiotics against respiratory and urinary tract pathogens[J].J Chemother,2014,19(2):152—160. [39]Liu Z,Wang w,Zhu Y,et a1.Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum[J].Fems Microbiol Left,2013, 341(1):37—44. 『40]Dorota W,Dorota T.Effect of sub—minimum inhibitory concentrations of ciprofloxacin,amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine[J]. Lasers Electro—optics,2013,23(6):7471-7480. 【41]Ara J,Jnhee A.Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphy’lococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin[J].Bmc Microbiol,2016,16(1):170—179. [42]Kaplan J B,Jabbouri S,Sadovskaya 1.Extracellular DNA— dependent biofilm formation by St印hylococcus epidermidis RP62A in response to subminimal ihnibitory concentrations ofantibiotics[J].Res Microbiol,201 1,162(5):535—541. [43]Husain F M,Ahmad I,Baig M H,et a1.Broad—specturm inhibition of AHL—regulated virulence factors and biofilms by sub—inhibitory concentrations of ceftazidime[J】.RSC Advan,20 1 6,6(33):27952—27962. 『44]Staruer T D,Shrout J D,Parsek M R,et a1.Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus inlfuenzae biofilm formation and Diminish established biofilms[J].Antimicrob Agents Chemother,2008, 52(1):137-145. [45]Roudashti S,Zeighami H,Mirshahabi H,et a1.Synergistic activity of sub—inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence 中国抗生素杂志2018年l1月第43卷第l1期 traits[J].WorldJo Microbiol giotechnol,201 7,33(3):50—57. [46】LiX Xue F’YangW eta1.Effects ofthe subinhibitory concentration of levofloxacin promote virulence factor 1329 concentratiOns of ci口rof1oxacin induce SOS response and mutations of antibiotic resistance in bacteria[J1.Ann Microbiol,2010,60(3):5l1-5l7. 【60]Roch M,Clair P,Renzoni A,et a1.Exposure of c hylococcus aureus to subinhibitory concentrations Of production of Pseudomonas aeruginosa[J].Chin J Clin Pharmacol,2013,5(163):355-357. f47]Sophie H,Elisabeth K.Bacterial persisters:Formation, 13-lactam antibiotics induces heterogeneous vancomycin— intermediate Staph)rlococcus aureus[J].Antimicrob Agents Chemother,2014,58f9):5306-53l4. eradication,and experimental systems[J].Trends Microbiol, 2014,22(7):41 7424. [48】Johnson P J T,Levin B R.Pharmacodynamics,population [61】Balaji K,Thenmozhi R,Pandin aS K.Effect ofsubinhibitory dynamics and the evolution ofpersistence in st叩hylococcus aureus[J].Plos Genetics,2013,9(1):el003123. [49】Dorr T,Lewis K,Vulic M.SOS Response induces persistence to lfuoroquinolones in Escherichia coli[J].Plos Genetics,2009,5(12):e1000760. f50]Helaine S,Cheverton A M,Watson K G,et a1. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters[J].Science,20 1 4, 343(6167):204—208. [5 1]Baharoglu Z,Mazel D.Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: A route towards multiresistance[J].Antimierob Agents Chemothdr,201l,55(5):2438—2441. 【52]Beaber J W,Hochhut B,Waldor M K.SOS response promotes horizontal dissemination of antibiotic resistance genes[J].Nature,2004,427(6969):72—74. [53】Lopez E,Elez M,Matic I,8f a1.Antibiotic—mediated recombination:Ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli[J]. Molecul Microbiol,2007,64(1):83—93. [54】Sandegren L,Dan I A.Bacterial gene amplification: Implications for the evolution of antibiotic resistance[J]. Nat Rev Microbiol,2009,7(8):578—588. 『551 Gutierrez A,Laureti L,Crussard S,et a1.Beta-lactam antibiotics promote bacterial mutagenesis via an RpoS- mediated reduction in replication fidelity[J].Nat Communicat,2013,4:1610-1618. [56】Nair C G,Chao C,Ryall B,et a1.Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic ifbrosis pathogen Pseudomonas aeruginosa[J].Lett In Appl Microbiol,2013,56(2):149—154. [57】Louise E,Liette E,Michael E.Potential impacts of aquatic pollutants:Sub—clinical antibiotic concentrations induce genome changes and promote antibiotic resistance[J].Front Microbiol,2015,6(803):803—812. [58】Henderson—Begg S K,Livermore D M,Hall L M.Effect of subinhibitory concentrations of antibiotics on mutation rfequency in Streptococcus pneumoniae[J].J Antimicrob Chemother,2006,57(5):849—854. [59]Wang P,Zhang X N,Wang L,et a1.Subinhibitory concentrations of lfuoroquinolones on biofilm production by clinical isolates of Streptococcus pyogenes[J].Ind J Med Res,2013,137(5):963—971. 【62】Shen S,Zhang Yuan et a1.Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane [J].Food Control,2015,47(47):196—202. f63]Cortes P,Pinas G O A,Echenique J, a1.Subinhibitory concentrations of penicillin increase the mutation rate to optochin resistance in Streptococcus pneumoniae[J].J Antimicrob Chemother,2008,62(5):973-977. [64】Goh E B,Yim G,Tsui W et a1.Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics[J].ProceedNatAcadScie USA,2002,99(26):17025. 【65]Garima K,Pathak R,Tandon R,et a1.Diferential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents[J].Tubercul,2015,95(2):155—161. [66】Marti E,Huerta B,Rodriguezmozaz S,et a1.Effects of subinhibitory ciprofloxacin concentrations on the abundance of qnrS and composition of bacterial communities from water supply reservoirs[J].Chemosphere,2016,161:470-474. [67】Tattevin P,Basuino L,Chambers H F.Subinhibitory nuoroauinOlone exposure selects for reduced beta.1actam susceptibility in methicillin-resistant stnphylococcus aureus and alterations in the SOS—mediated response[J].Res Microbiol,2009,1 60(3):1 87-92. 【68]Hua X T,Chert Q,Li X,et a1.Global transcriptiona1 response of Acinetobacter baumannii to a subinhibitory concentration of tigecycline[J]./nt J Antimicrob Agents, 2014,44(4):337-344. 【69】Cheng G Hao H H,Dai M H,et a1.Antibacterial action of quinolones:Fromtargetto network[J].EuropJMedChem, 2013.44(42):555—562. [70】L6pez E,Elez M,Matic I,Pf a1.Antibiotic-mediated recombination:ciprofloxacin stimulates S0S.independent recombination ofdivergent sequences in Escherichia coli[J]. Molecul Microbiol,2007,64(1):83.93. [71】Jutkina J,Rutgersson C,Flach C F,et a1.An assay for determining minimal concentrations of antibiotics that drive horizontal rtansfer of resistance[J].Sci Total Environ,2016, 1330 亚抑菌浓度抗生素对细菌耐药性和毒力影响的研究进展谷宇锋等 548-549:13 1.138. f72]Brown S Comforth D M,Mideo N.Evolution of virulence in opportunistic pathogens:generalism,plasticity,and control[J].Trends Microbiol,2012,2O(7):336—342. [73】Andrade J P,Farias L,Ferreira J F'et a1.Sub—inhibitory concentration of piperacillin—tazobactam may be related to virulence properties offilamentous Escherichia eoli[J].Curr Microbiol,2016,72(1):19—28. [74】Sachdeva M,Leeds J A.Subinhibitory concentrations of LFF571 reduce toxin production by Clostridium diifcile[J]. AntimicrobAgents Chemother,2015,59(2):1252—1257. [75]Ismaeel A Senok A C,Bindayna K M,et a1.Effect of antibiotic sub inhibitory concentration on cytolethal distending toxin production by Campylobacter jejuni[J].J Infect,2005,51(2):144—149. 『761 Haddadin R N,Saleh S,Aladham I S, a1.The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus alAFebIs biofilms[J].JAppl Microbiol,2010,108(4):1281—1291. [77】Li D M,Renzoni A,Estoppey L et a1.Induction of ifbronectin adhesins in quinolone—resistant Staphylococcus o ̄Feus by subinhibitory levels of ciprofloxacin or by sigma B transcription factor activity is mediated by two separate pathways[J]. Antimicrob Agents Chemother,2005,49(3):916—924. 『781 Furneri P M,Garozzo A,Musumarra M P,et a1.Effects on adhesiveness and hydrophobicity of sub—inhibitory concentrations of netilmicin[J]./nt J Antimicrob Agents. 2003,22(2):164—167. [791 Gallardo—Moreno A M,Van Der Mei H C,Busscher H J,et a1.Adhesion of Enterococcus faecalis 11 3 1 grown under subinhibitory concentrations of ampicillin and vancomycin to a hydrophilic and a hydrophobic substratum[J].Ferns MierobiolLett,2001,203(1):75-79. [80】Sinel C,Cacaci M,Meignen P,et a1.Subinhibitory concentrations of ciprofloxacin enhance antimicrobial resistance and pathogenicity of Enterococcus faeeium[J]. AntimicrobialAgents Chemother,2017,61(5):AAC.02763-16. [8 1】Rasigade J P’Moulay A,Lhoste Y’et a1.Impact of sub— inhibitory antibiotics on fibronectin—mediated host cell adhesion and invasion by StaphylOCOCCUS aureus[J].BMC Microbiol,201l,I1(1):263—271. 【82]Vidya K C,Mallya P S,Rao P S.Inhibition of bacterial adhesion by subinhibitory concentrations of antibiotics[J]. IndJMedMicrobiol,2005,23(2):102—105. [83]Ogaard A R,Bjoro K,Bukholm G,et a1.Pseudomonas aeruginosa virulence factors:modifications by sub— inhibitory concentrations of carbenicillin or gentamicin[J]. 1986,94(2):63—68. 『84]Dal S M,Bovio C,Culici M,et a1.Interference of sub— inhibitory concentrations of gatifloxacin on various determinants of bacterial virulence[J].J Chemother,2002, 14(5):473—482, [85]Pompilio A,Catavitello C,Picciani C,et a1.Subinhibitory concent】 ations of moxinoxacin decrease adhesion and biofilm formation of Stenotrophomonas maltophilia from cystic ifbrosis[J].JMedMicrobiol,2010,59(1):76—81. [86]Wojnicz D,Klak M,Adamski R,et a1.Influence of subinhibitory concentrations of amikacin and ciprofloxacin on morphology and adherence ability of uropathogenic strains[J].Folia Microbiol,2007,52(4):429—436. [87]Shen L,ShI Y,Zhang D,et a1.Modulation of secreted viurlence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa[J].J Microbiol, 2008,46(4):441—447. [88]Braga P,Sala S M.Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial viurlence factors[J].Antimicrob Agents Chemother,1 999, 43(5):1013—1019. [89]Miyamoto K N,Monteiro K M,Caumo K D S,et a1. Supporting data for comparative proteomic analysis of Listeria monocytogenes ATCC 7644 exposed to a sublethal concentration ofnisin[J].2015,1 19:230—237. 『90]Tsai S H,Lai H C,Hu S T.Subinhibitory doses of Aaminoglycoside antibiotics induce changes in the phenotype of Mycobacterium abscessus[J].Antimicrob Agents Chemother,2015,59(10):6161-6169. 【91]Parul G,Sanjay C,Kusum H.Subinhibitory concentration of cipron0xacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation&reduction ofviurlence[J].IndJMedRes,2016, 143(5):643·651. [92】Zhuang Chen Yao F,et a1.Short—term pretreatment of sub—inhibitory concentrations of gentamycin inhibits the swarming motility of Escherichia coli by down—regulating the succinate dehydrogenase gene[J].Cellul Physiol Biochem,2016,39(4):1307—1316. [93】Lagrou K,Peetermans W E,Jorissen M,et aL Subinhibitory concentrations of erythromycin reduce pneumococcal adherence to respiratory epithelial cells in vitro[J].J Antimicrob Chemother,2000,46(5):7 1 7-723. 『94]Molinari G,Guzm ̄m C A,Pesce A,et a1.Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics[J].JAntimicrobial Chemother,1993,31(5):681—688. 『95]Joo H S,Chan J L,Cheung G Y C,et a1.Subinhibitory concentrations of protein synthesis—inhibiting antibiotics promote increased expression of the agr viurlence regulator and production of phenol·soluble modulin cytolysins in 中国抗生素杂志2018年11月第43卷第11期 community..associated methicillin..resistant Staphylococcus 1331 『1021 De Moura T M,Campos F S,Caierao J,et a1.Influence of aureus[J].Antimicrob Agents Chemother,2010,54(1 1): 4942—4944. 『961 Ohlsen K,Ziebuhr W,Koller K P,et a1.Effects of subinhibitory concentrations of antibiotics on alpha— toxin(hla)gene expression of methicillin—sensitive and methicillin—resistant Staphylococcus aureus isolates[J]. AntimicrobAgents Chemother,1998,42(11):2817—2823. [97]Gottschalk S,Ingmer H,Thomsen L E.The lysine—peptoid hybrid LP5 maintain activity under physiological conditions and affects virulence gene expression in Stap lococcus aureus[J].Peptides,2016,78:24-29. 【981 Ara J,Juhee A.Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aldrelds exposed to subinhibitory levels of oxacillin and levofloxacin[J].BMC Microbiol,2016,16(1):170—179. [99】Lazaro—Diez M,Remuzgo—Martinez S,Rodriguez— Mirones C,et a1.Effects of subinhibitory concentrations of ceftaroline on methicillin—resistant Staphylococcus aureus (MRSA)biofilms[J].PloS one,2016,11(1):e0147569. [100]Lfick P C,Schmitt J Hengerer A,et a1.Subinhibitory concentrations of antimicrobial agents reduce the uptake of Legionella pneumophila into Acanthamoeba castellanii and U93 7 Cells by altering the expression of virulence— associated antigens[J].Antimicrob Agents Chemother,1998, 42(1 1):2870—2876. 『1011 Debbia E A,Maioli E,Roveta S,et a1.Effects ofrifaximin on bacterial virulence mechanisms at supra--and sub··inhibitory concentrations[J].J Chemother,2008,2O(2):186-194. a subinhibitory concentration of vancomycin on the in vitro expression of viurlence--related genes in the vancomycin-- resistant EHterococcHs faecalis[J].Revista Da Socied Brasileira De Med Trop,2015,48(5):617—621. 『1031 Haas B,Grenier D.Impact of sub—inhibitory concentrations of amoxicillin on s ̄eptococcus suis capsule gene expression and inflammatory potential[J].Pathog,2016,5(2):37—49. 【104]Otto M P’Martin E,Badiou C,et a1.Effects ofsubinhibitory concentrations of antibiotics on virulence factor expression by community--acquired methicillin--resistant Staphylococcus aureus[J].JAntimicrob Chemother,2013,68(7):1524—1532. [1051 Wassermann T,Jorgensen K M,Ivanyshyn K,et a1. The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations ofciprofloxacin[J].Microbiol,2016,162(5): 865.875. [106】Yim G,Wang H H,Davies J.Antibiotics as signaling molecules[J].Philosoph Transact Royal Soci London,2007, 362(1483):1195—1200. [107]Popat R,Crusz S A,Messina M,et aL Quorum—sensing and cheating in bacterial biofilms[J].Proceed Biolog Sci,2012, 279(1748):4765-4771. [108】Goo E,An J H,Kang Yj et a1.Control of bacterial metabolism by quorum sensing[J].Trends Microbiol,2015, 23(9):567—576. [1 09】Rutherford S L Bassler B L.Bacteiral quorum sensing:Its role in virulence and possibilities for its control[J].CoM Spring Harbor Perspectives Med,2012,2(1 1):705—709. 

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务