N.E.JBjerrum-Bohra
JohnF.Donoghueb,andBarryR.Holsteinb
a
DepartmentofPhysics
UniversityofCaliforniaatLosAngelesLosAngeles,CA90095-1574,U.S.A∗
and
TheNielsBohrInstitute,Blegdamsvej17,CopenhagenØ,
DK-2100,Denmarkb
DepartmentofPhysics-LGRTUniversityofMassachusetts
Amherst,MA01003
February1,2008
Abstract
Wetreatgeneralrelativityasaneffectivefieldtheory,obtainingthefullnonanalyticcomponentofthescatteringmatrixpotentialtoone-looporder.Thelowestordervertexrulesfortheresultingeffectivefieldtheoryarepresentedandtheone-loopdiagramswhichyieldtheleadingnonrelativisticpost-NewtonianandquantumcorrectionstothegravitationalscatteringamplitudetosecondorderinGarecalculatedindetail.TheFouriertransformedamplitudesyieldanonrelativisticpotentialandourresultisdiscussedinrelationtopreviouscalculations.Thedefinitionofapotentialisdiscussedaswellandweshowhowtheambiguityofthepotentialundercoordinatechangesisresolved.
1Introduction
Theideathatafieldtheoryneednotbestrictlyrenormalizableinthetra-ditionalsenseyetcanstillyieldusefulquantumpredictionswhentreatedasaneffectivefieldtheory[1]hasbeenclearlydemonstratedinchiralpertur-bationtheoryandinotherapplications[2].Quantumloopcalculationsleadtowelldefinedresultsinthelowenergylimit.Interestingly,suchmethodscanalsobeappliedtogeneralrelativity.Asaneffectivefieldtheory,thequantizationofgeneralrelativitycanbecarriedoutinaconsistentway,sincethetroublesomesingularitieswhichoccurforvarioustypesofmattersourcesintraditionalrenormalizationschemes[3,4,5,6,7]canbeabsorbedintophenomenologicalconstantswhichcharacterizetheeffectiveactionofthetheory.Thiseffectivefieldtheoryapproachoffersthenapossiblewayaroundthefamiliarrenormalizationdifficultiesofgeneralrelativityinthelowenergyregimeand,usingthisapproachwithbackgroundfieldquanti-zation[8]ofgeneralrelativity,oneofus[9,10]someyearsagoderivedtheleadingquantumandclassicalcorrectionstotheNewtonianpotentialoftwolargenon-relativisticmasses.Thiscalculationhassincebeenthefocusofanumberofpublications[11,12,13,14],andthisworkcontinues,mostrecentlyinthepaper[15].Unfortunately,duetodifficultyofthecalculationanditsmyriadoftensorindicestherehasbeenlittleagreementamongthesevariousauthors.Theclassicalcomponentofthecorrectionhaspreviouslybeendiscussedinthepapersby[16,17,18,19,20],andherethereisgen-eralagreementalthough,asweshalldiscuss,thereexistsanunavoidableambiguityindefiningthepotential.ThebasicdisagreementslieratherinthequantumcorrectionsandinthepresentpaperweshallpresentwhatwebelievetobethedefinitiveresultfortheleadingclassicalandquantumcorrectionsoforderG2,usingthefullscatteringamplitudeasthedefinition
1
ofthenon-relativisticpotential.
Wenotethat,asapreludetothiseffort,inarecentpaper[24]twoofushavedealtwiththethequantumandclassicalcorrectionstotheReissner-Nordstr¨omandKerr-Newmanmetricsofchargedscalarsandfermions.Suchquantumandclassicalcorrectionshavealsobeenconsideredfromtheview-pointofascatteringpotentialinapaper[25]byoneofus.RecentlywehavealsocalculatedthefullclassicalandquantumcorrectionstotheSchwarzshildandKerrmetricsofscalarsandfermions[26]andhaveshownindetailhowthehigherordergravitationalcontributionstothesemetricsemergefromloopcalculations.Inthepresentpaperthenweconsiderthecorrespondingcalculationofthefullscatteringamplitude.
Ofcourse,treatinggeneralrelativityasaneffectivefieldtheoryiscarriedoutatthecostofintroducinganeverendingsetofadditionalhigherderiva-tivecouplingsintothetheory.InthissenseEinstein’sgeneralrelativityisstillaperfectlyvalidtheoryforgravitationalinteractions—althoughnowitrepresentsonlythetheminimaltheory.AtsomestageadditionalderivativecouplingsmustbeappendedtotheEinsteinaction,signifyingmanifesta-tionsofthehigherenergycomponentoftheeffectivefieldtheory.However,thelowenergyscatteringpotentialisfreefromthesenewcouplingsandrepresentsamodel-independentresultforquantumgravity.
Thiscalculationispossiblebecausethepost-Newtonianandquantumcorrectionswhichweconsideraredeterminedfullybythenon-analyticpiecesoftheoneloopamplitudegeneratedbythelowestorderEinsteinaction.Ofcourse,inordertodealwiththeultravioletdivergenceswhichariseatoneloop,onemustrenormalizetheparametersofhigherderivativetermsintheaction.However,suchpieceswillonlyaffecttheanalyticpartsoftheone-loopamplitude,andwillnotcontributetoourpotential.
Wewillemploythesameconventionsasinourpreviouspapers,namely(=c=1)aswellastheMinkowskimetricconvention(+1,−1,−1,−1).Wewillbegininsection2withaveryshortintroductiontotheeffectivefieldtheoryquantizationofgeneralrelativityandfocushereespeciallyonthedistinctionbetweennon-analyticandanalyticcontributionstothescat-teringamplitude.Wealsoincludeadiscussionofthedefinitionofthenon-relativisticpotential.
Nextinsection3weevaluatethediagramswhichcontributetothescat-teringandexamineindetailtheresultsforthevariouscomponents.Theresultingnonanalyticpieceofthescatteringamplitudeisthenusedinordertoconstructtheleadingcorrectionstothenonrelativisticgravitationalpo-tential.Wealsodiscussourresultinrelationtopreviouscalculationsandattempttosortoutthevariousinconsistenciesinthepublishednumbers.
2
Finallyinaconcludingsectionwesummarizeourfindings.
2
Reviewofgeneralrelativityasaneffectivefieldtheory
Webeginwithabriefreviewofgeneralrelativity,theLagrangianofwhich(notincludingacosmologicalterm)is
L=√κ2
+Lmatter
(1)
whereκ2=32πGisthegravitationalcoupling,Rµµ
ναβΓµσαΓσµ≡∂αΓµνβ
−∂βΓνα+νβσofthemetric−ΓσβΓναisthecurvaturetensor,andgdenotesthedeterminant
fieldgµν.Here
√
−g
2R
inthelowenergylimitoftheeffectivefieldtheory,theydominateovertheanalyticcontributionswhicharisefromthepropagationofmassivemodes.Thetypicalnon-analytictermswewillconsiderareofthetype:1/
wherep,p′istheincoming,outgoingfour-momentum.ThecorrespondingcoordinatespacerepresentationcanbefoundbytakingthenonrelativisticlimitandFourier-transforming,yieldingtheresult
d3q1
V(x)=
2m2
E−En+iǫ
+...
(5)
Thedefinitionoftheboundstatepotentialisdiscussedindetailin[17].Inparticular,inaHamiltoniantreatmenttherearealsotermsintheHamil-tonianinvolvingGp2/rthatcontributeatthesameorder.Therelationof
˜bs(q),inEinstein-Infeld-Hoffmanncoordinates,theboundstatepotentialV
tothelowestorderscatteringpotentialis
˜bs(r)=V(r)+7Gm1m2(m1+m2)V
q2
+β1κln(−q)+β2κ
424
m−q2
+...
(7)
HerethecoefficientsA,B,...correspondtoanalyticpieceswhichareofno
interesttous,asthesetermswillonlydominateinthehighenergyregimeof
5
theeffectivetheory.Rather,theα,β1,β2,...coefficientscorrespondtothenonlocal,nonanalyticcontributionstotheamplitudeandaretheoneswhichweseek.Inparticular,theβ1,β2termswillyieldtheleadingpost-Newtonianandquantumcorrectionstothepotential.
3ResultsfortheFeynmandiagrams
Inthissectionwewillpresentourresults.Alldiagramshavebeenper-formedbothbyhandandbycomputer.Inordertoevaluatethediagramsbycomputer,analgorithmforMaple7(TM)1wasdeveloped.Thisprogramcontractsthevariousindicesandperformtheloopintegrations.Allresultsobtainedthiswaywereconfirmedresultsobtainedbyhand.TheresultingamplitudeswerethenFouriertransformedtoproducethescatteringpoten-tial,andonlythenonanalyticpiecesoftheamplitudewereretained.Forthispartofthecalculation,thefollowingFourierintegralsareuseful:
d3q
1|q|2=iq·
(2π)3e
r12π2r2
(8)d3q
2πr3Afterthisbriefintroduction,weproceedtogivetheresultsforeachdiagraminturn.NotethatthebasicverticesneededforourcalculationaregiveninAppendixA.
3.1Thetreediagram
Theresultforthisdiagraminthenonrelativisticlimitisthewell-knownlowestordertree-levelresultwhichyieldstheNewtonianpotential.WedefinethediagramusingtheFeynmanrulesas:
iM1(a)(q)=τµν
1(k1,k2,m1)
iP
µναβq
2(10)
1(a)
Figure1:ThetreediagramgivingNewtonslaw.
whoseFouriertransformproducesthescatteringpotential
V1(a)(r)=−
Gm1m2
(2π)4τµν1
(k1,k1+l,m1)τρσ1(k1+l,k2,m1)×ταβ−l,m2)τγδ
1(k3,k31(k3−l,k4,×
mil)2−m22
2)
iPµναβ
(k3−(l+q)2
7
(12)
fortheboxand
M2b=
d4l
P
ρσγδ
(k1+l)2−m21
·
i
l2
il·k1
(2π)2
d4l
2
l2(l+q)2((l+k1)2−m21)((l−k3)2−m22)
by
1
1
(2π)2
l·q
(2π)2
d4l
2
l2(l+q)2((l+k1)2−m21)((l−k3)2−m22)
whichsimplifiesto
2
−1
q(2π)2
(14)
(16)
Viathesesimplificationsonecanreducetheboxandcrossboxamplitudestoareducedpiececonsistingonlyofintegralswithtwoorthreepropagatorsandacomponentwiththebasicformoftheboxandcrossedboxintegrals,i.e.,withnoloopmomentumtermsinthenumerator.Then,usingtheintegralspresentedinAppendixB,performingtheabove-describedcontractionsinthetwodiagrams,andtakingthenonrelativisticlimitweendupwiththeresult
46red
M2((q)=a)+2(b)
m1m2G23
πr3
(21)
fortheirreduciblepiecesothatthetotalresultfortheboxandcrossbox
contributiontothepotentialis
totV2(a)+2(b)(r)=−
47
πr3
(22)
Theseresultsareinagreementwiththoseof[15].
3.3Thetrianglediagrams
Thenextpieceswewillconsiderarethesetoftrianglediagrams,forwhich
wefind
d4l
M3(a)(q)=
(l+q)2
iP
µνσρ
(l+k1)2−m21
(23)
9
3(a)3(b)
Figure3:Thesetoftriangulediagramscontributingtothescatteringpo-tential.andM3(b)(q)=
d4l
iP
αβγδ
l2
(24)
Thecalculationofsuchdiagramsyieldsnorealcomplications—theintegralsneededarequitestraightforwardandarepresentedinAppendixB.However,asignificantsimplificationresultsfromtheuseoftheidentity
PγδσρPαβµντσρµν(k1,k2,m1)=τγδαβ(k1,k2,m1)
and,takingthenonrelativisticlimit,wefindforthesetwopieces
7
M3(a)(q)=−8G2m1m2
|q|
7
M3(b)(q)=−8G2m1m2
|q|
(25)
(l−k3)2−m22
(26)
Ourresultsforthesediagramsagreewiththoseof[15],andtheFourier
transformedresultis
V3(a)+3(b)(r)=−4
G2m1m2(m1+m2)
πr3
(27)
3.4Thedouble-seagulldiagram
1
iP
Wehaveforthedouble-seagulltermM4(a)(q)=
(2π)
αβγδσρµντ(k,k,m)τ(k3,k4,m2)×121224
αβµν
l2
(28)
10
4(a)
Figure4:Thedouble-seagulldiagramcontributiontothescatteringpoten-tial.
Thedouble-seagullloopdiagramisquitestraightforward,andissimplifiedbyuseoftheidentityEq.25.Note,however,thatthereexistsasymmetryfactorof1/2!.Theresultingamplitudeisfoundtobe
M4(a)(q)=44G2m1m2logq2
(29)
whoseFouriertransformyieldsthedouble-seagullcontributiontothepo-tential
(r)=−22
m1m2G2
V4(a)Thereexisttwoclassesofvertexcorrectiondiagrams:Forthemassiveloopdiagrams,showninFigures5(a)and5(b)wehave4M5(a)(q)=
dl
iP
φǫρσ
2q2
i
lαβµνλκγδρσ(φǫ)
(2π)4
τ1(k1,l+k1,m1)τ1
(l+k1,k2,m1)τ1(k3,k4,m2)τ3(−l,q)
×
iP
αβγδ
(l+q)2iPφǫλκ(l+k1)2−m21
(32)
whileforthepuregravitonloopdiagramsshowninFigures5(c)and5(d)wehave
M5(c)(q)=
1(2π)
4τλκǫφ4,m2)ταβ
2,m1)τµνρσ(γδ)2(k3,k1(k1,k3(l,−q)×
iP
µνλκ
iP
αβγδ
(l+q)2
d4l2!
l2
iP
ρσαβ
q2
(34)
Thevertexcorrectiondiagramsarecertainlythemostchallengingtoper-form,disregardingtheboxandcrossedboxdiagrams,andtheresultsgobacktotheoriginalcalculationof[9,10]—however,duetoanalgebraicer-ror,theoriginalresultquotedforthesuchdiagramswasinerror.Sincethattime,theresultsforthegravitationalvertexcorrectionshavebeencheckedatlengthinvariouspublications[13,15];however,until[26]thecorrectformshavenotbeengiven.Usingtheresultsof[26]andtakingthenonrelativisticlimit,wefindtheamplitudes,
MG2m1m2
π2
(m5(a)+5(b)(q)=21+m2
)3
logq2M52
5(c)+5(d)(q)=−
whoseFouriertransformyieldsthecorrectedresultsforthevertexmodifi-cationstothescatteringpotential:
V5(a)+5(b)(r)=
G2m1m2(m1+m2)
3
m1m2G23
m1m2G2
Itiscorrectlypointedoutin[15]thatthecoefficientofthetwo-gravitonvertexquotedin[9],[10]istoosmallbyafactoroftwo.However,thenumericalresultfortheloopintegralsgiventhereiniscorrectbecauseofthepresenceofthissymmetryfactor.
2
13
theamplitude
M6(a)+6(b)(q)=τρσ(k1,k2,m1)
iPρσλξ
q2
τγδ(k3,k4,m2)(38)
wherethevacuumpolarizationtensorisfoundfromtheeffectiveLagrangianobtainedby’tHooftandVeltman[3,4,5]—
L=−
1
120
R2+
7
−
π23
log(−q2)
21
120
q4ηαβηγδ
240
q2(qαqδηβγ+qβqδηαγ+qαqγηβδ+qβqγηαδ)+
11
15
G2m1m2logq2
(42)
whichisequivalenttothatoriginallyderivedin[9,10].AfterFouriertrans-formingwefindacontributiontothescatteringpotential
V6(a)+6(b)(r)=−
43
πr3
(43)
whichisinagreementwiththatgivenby[15].
4Theresultforthegravitationalpotential
Addingupallthecorrectionstothenon-relativisticpotentialwehaveour
finalresult
Gm1m241
+V(r)=−(44)
rr2TheclassicalterminthispotentialagreeswithEq.2.5ofIwasaki[17].
14
However,wenotethatthequantumcomponentofthepotentialisnotequivalenttoanypreviouspublishedresult[9,10,11,12,13,15].Asde-scribedabove,webelievethisresulttobetodefinitiveformofthenon-relativisticscatteringmatrixpotential.Ourresultsagreewith[15]foralldiagramsexceptthevertexcorrections3Howeverwehavemultiplechecksonthevertexcorrection,aswehaveseenthatourversionleadsexactlytotherequiredformoftheclassicalSchwarzschildmetric,forbothfermionsandbosons.
4.1APotentialAmbiguity
Thereisanimportantissueconcerningthepotentialthathasnotbeenthus-farmuchdiscussedintheliterature—thatboththeclassicalandquantumcorrectionstothepotentialareinsomesenseambiguous.Fortheclassicalcorrection,thisrealizationgoesbacktothepapersof[18,19,20],andtheseargumentsgeneralizereadilytothequantumcomponent.Inthissectionwediscussthisambiguityandarguethatatonelooporderourcalculationofthequantumcorrectiondoeshaveawelldefinedmeaning.
Asexploredin[18]theclassicalpost-Newtonianpotentialisnotinvariantunderacoordinatetransformationoftheform
G(m1+m2)r→r1+α
r
1+c
G(m1+m2)
r
G(m1+m2)
1+(c−α)
q2
=
1
1
Tobeprecisewearecomparingtothethirdversionof[15],availableintheelectronicarchive.Wehadseveraldisagreementswiththeoriginalversion,allofwhichexceptthevertexcorrectionhavebeencorrectedinthethirdversion.
3
15
Usingthispropagatorinordertoderivethegravitationalpotential,theresultwillingeneraldependonx,withtherelationtothecoordinatechangebeingα=−1r2dependonx,butsowillthecorrectionsoforderGc.Thisindicatesthatthepost-Newtonianpartofthestaticgravitationalpotentialisnotwell-definedinandofitself.
Thecoordinateambiguityalsogeneralizestothequantumpartofthepotential.Thereexistsacoordinateredefinition
G
r→r1+β
G1+d
G
1+(d−β)
rr
m2
,
Gm
mGm2
,
Gm2
m
,3
r
,(
Gm
m
)(53)
Thereexistsanambiguitybetweenthelasttwoofthesetermsarisingfroma
coordinatechange,butthiseffectcancelsforphysicalobservables,asshown
16
explicitlyin[18].WritingtheHamiltonianinthecenterofmassframetopost-Newtonianorder,wehave
24pp
H=−
2m28m32
(p·ˆr)2Gm1m2
+b()−
m1m2rInthestandardEinstein-Infeld-Hoffmanncoordinates,thecoefficientsa,b,c
havethevalues
1
a=
m1m2
1
b=
2
(55)
butunderthecoordinatetransformationofEq.45,onefindsthemodifica-tions
1
a→
m1m2
1
b→
m1m2
1
c→−
m5
,
p4
r
,
p2
r
2
,
Gm2
r
2
.(57)
Thelasttermhereisnoteworthybecauseitgoeslike1/r3—i.e.likethequantumcorrectioninthepotential—butitisdistinguishablebyitsmassdependenceplusthefactthatitisorderG3.Suchtermswillalsobeambigu-ousunderacoordinatetransformation,buttheeffectswillcancelamongthe
17
effectstermsofthisorder.Sothe“classical”coordinatechangeabovedoeschangethe1/r3terminthepotential,buthasaspecificformandtheeffectscancelsamongotherclassicaltermsintheHamiltonian.
Nowletusexaminethequantumeffects,keepingonlyonepowerofthequantumexpansionparameter
G
GrGm
−q2andq2ln−q2
terms.Atransformationofthesetermstocoordinatespaceallowsustointerprettheseaslongdistancecorrectionstothepotential.OurresultisdisplayedinEq.44.
18
Thequantumcorrectionsthatwefindforthescatteringpotentialholdequallyfortheboundstatepotential.Thisisbecausethetransformationbetweenthetwohasnoquantumcomponent.Thedifferencebetweenthetwoisaclassicalcorrectionthatcomesfromiteratingthelowestorderpo-tential.Dimensionalanalysisrevealsthatinthenonrelativisticlimitthisiterationhastheabilitytogenerateonlyaclassicaleffectandnotaquan-tumcorrection.
Wehavefoundaresultforthenonrelativisticpotentialwhichwebelieveisthefinalandcompleteresultforthisquantity.Thepotentialmatchestheexpectationsfromdimensionalanalysisasdiscussedpreviously[9,10]andtheknownambiguityoftheformoftheclassicalcorrectionhasbeenseentooriginatefromthepossibilityofrewritingapotentialenergytermintheHamiltonianintermsofkineticenergyandviceversa,asalsodiscussedin[18,20,19].Suchrewritingsarenotpossibletodoforthequantumtermattheordertowhichwework.Thereforethequantumcorrectiontothepotentialisadefiniteexactquantity.
Thequantumcorrectionsaretoosmalltobeobservedexperimentally.However,thefactthatthesearereliablypredictedisimportantforourunderstandingofquantumgravity.Theseeffectsareduetothelowenergypropagationofmasslessdegreesoffreedomandhenceareuniquelypredictedforanyquantumtheoryofgravitythatreducestogeneralrelativityinthelowenergylimit4.Inthissense,thesearelowenergytheoremsofquantumgravity.
Acknowledgments
N.E.J.Bjerrum-BohrwouldliketothanktheDepartmentofPhysicsandAstronomyatUCLAforitskindhospitalityandP.H.Damgaardfordis-cussions.TheworkofBRHanJFDissupportedinpartbytheNationalScienceFoundationunderawardPHY-98-01875.
Appendices
A
VerticesandPropagators
WebeginbylistingtheFeynmanruleswhichareemployedinourcalculation.Foraderivationoftheseforms,see[26].
A.1Scalarpropagator
Themassivescalarpropagatoris:
q2−m2+iǫ
A.2Gravitonpropagator
Thegravitonpropagatorinharmonicgaugecanbewrittenintheform:
where
Pαβγδ=
q2+iǫ
1
µν=τ1(p,p′,m)
where
µν
τ1(p,p′,m)=−
iκ
ηλρσ
=τ2(p,p′,m)
20
where
τηλρσ
2(p,p′)=iκ2
IηλαδIρσβ1δ
−
Iηλρσ1
2
−2
(ηαγηβδ+ηαδηβγ).
A.53-gravitonvertex
The3-gravitonvertexcanbederivedviathebackgroundfieldmethodandhastheform[9],[10]
=τ3µναβγδ(k,q)
where
τ3µνiκ
αβγδ(k,q)=−
ηµνq2
+2qλqσ2
IµναβσλIσλγδ+IγδIµννλαβ−IµσαβIγδ−IµσγδIαβνλ+qλqµ
ηαβIγδνλ+ηγδIαβνλ+qλqν
ηαβIµλµλγδ+ηγδIαβ
−q2
ηαβIµνγδ−ηγδIµναβ−ηµνqσqληαβIγδσλ+ηγδIαβσλ+
2qλ
IµαβλσIγδσν(k−q)µ+IαβλσIµγδσ(k−q)ν−IγδλσIαβσνkµ−IγδλσIαβσkν
+q2
IµαβσIγδνσ+IµαβνσIγδσ+ηµνqσqλIλραβIγδρσ+IλρσγδIαβρ+
(k2+(k−q)2)Iµσµσ1
αβIγδσν+IγδIαβσν−
BUsefulIntegrals
Intheevaluationofthevariousdiagramsweemploythefollowingintegrals
d4li
=J=
l2(l+q)2
lµ
qµL+...()
(2π)432π21d4li2
Jµν==L−qηµν−
l2(l+q)23
1
(2π)432π2m2
d4l
i
d4l
−L−S+...
(66)
Iµ=
=Iµν
=
l2(l+q)2((l+k)2−m2)
q2q224
2
S+...(67)
l2(l+q)2((l+k)2−m2)
i11
=S+kµkν−L−S
8m2m2
1q2q21
+qµkν+qνkµL+
21
Iµνα=
=++
+
l2(l+q)2((l+k)2−m2)
i1
S+kµkνkα−16m2
11
L+Sqµkνkα+qνkµkα+qαkµkν
m2m2
1q2q2qµqνkα+qµqαkν+qνqαkµ−
232q2L12
1
q2S+...ηµνqα+ηµαqν+ηναqµ−
16
π2m
.−q2
d4l
(69)
wherewehavedefinedL=ln(−q2)andS=
Onlythelowestorder
nonanalytictermsareincludedintheaboveforms.Higherordernonanalyticcontributionsaswellastheneglectedanalytictermsaredenotedbythe
2
ellipses.Thefollowingidentitiescanbeverifiedonshell,k·q=q
.
Inordertodoevaluatetheboxdiagramsthefollowinglowestorderintegralsareneeded.Thehigherordercontributionsofnon-analytictermsaswellasneglectedanalytictermsareagaindenotedbyellipses.
d4l
K=22l2(l+q)2((l+k1)2−m21)((l−k3)−m2)
i
=L+...(70)
3m1m2
d4l′
K=22l2(l+q)2((l+k1)2−m21)((l+k4)−m2)
i
L+...(71)=
3m1m2
2
q
Herek1·q=q,k·q=−322,wherek1−k2=
2=m2=k2togetherwithk2=m2=k2.Also,wehavek4−k3=qandk112324
definedw=(k1·k3)−m1m2andW=(k1·k4)−m1m2.
Thefollowingconstraintsforthenonanalytictermsoftheaboveintegralsholdtrueonshell:
2
2
Iµναηαβ=Iµνηµν=Jµνηµν=0
23
(72)
Iµναq=−
α
q2
22
2Jµν,
Iµνkν=
1
Iµ,Iµq=−
µ
µ
q2q2
Jµ,Jµq=−
2
J(74)
References
[1]S.Weinberg,“PhenomenologicalLagrangians,”PhysicaA96(1979)
327.[2]See,e.g.,J.GasserandH.Leutwyler,Ann.Phys.(NY)158,142(1984);
Nucl.Phys.B250,465(1985).[3]G.’tHooftandM.Veltman,69-94,Ann.Inst.HenriPoincar´e,Sec.
A20,1974.[4]M.Veltman,Gravitation,266-327,editedbyR.BalianandJ.Zinn-Justin,eds.,LesHouches,SessionXXVIII,1975,NorthHollandPub-lishingCompany,1976.[5]M.H.GoroffandA.Sagnotti,“TheUltravioletBehaviorOfEinstein
Gravity,”Nucl.Phys.B266(1986)709.[6]S.DeserandP.vanNieuwenhuizen,“OneLoopDivergencesOfQuan-tizedEinstein-MaxwellFields,”Phys.Rev.D10(1974)401.[7]S.DeserandP.vanNieuwenhuizen,“NonrenormalizabilityOfThe
QuantizedDirac-EinsteinSystem,”Phys.Rev.D10(1974)411.[8]B.S.Dewitt,“QuantumTheoryOfGravity.1.TheCanonicalTheory,”
“QuantumTheoryOfGravity.Ii.TheManifestlyCovariantTheory,”“QuantumTheoryOfGravity.Iii.ApplicationsOfTheCovariantThe-ory,”Phys.Rev.160(1967),1113;162(1967)1195;162(1967)1239.[9]J.F.Donoghue,“LeadingquantumcorrectiontotheNewtonianpoten-tial,”Phys.Rev.Lett.72(1994)2996[arXiv:gr-qc/9310024].[10]J.F.Donoghue,“GeneralRelativityAsAnEffectiveFieldTheory:The
LeadingQuantumCorrections,”Phys.Rev.D50(1994)3874[arXiv:gr-qc/9405057].
24
[11]I.J.MuzinichandS.Vokos,“Longrangeforcesinquantumgravity,”
Phys.Rev.D52,3472(1995)[arXiv:hep-th/9501083].[12]H.W.HamberandS.Liu,“OnthequantumcorrectionstotheNewto-nianpotential,”Phys.Lett.B357,51(1995)[arXiv:hep-th/9505182].[13]A.A.Akhundov,S.BellucciandA.Shiekh,“Gravitationalinteraction
tooneloopineffectivequantumgravity,”Phys.Lett.B395,16(1997)[arXiv:gr-qc/9611018].[14]N.E.J.Bjerrum-Bohr,Cand.Scient.Thesis,Univ.ofCopenhagen
(2001).[15]I.B:KhriplovichandG.G.Kirilin,“Quantumpowercorrectiontothe
Newtonlaw,”[arXiv:gr-qc/0207118][16]S.N.Gupta,“QuantizationofEinstein’sGravitationalField:General
Treatment,”Proc.Phys.Soc.LondonA65,608,1952;S.N.GuptaandS.F.Radford,“Quantumfield-theoreticalelectromagneticandgravita-tionaltwo-particlepotentials,”Phys.Rev.D,Vol21,No.8,2213,1980.[17]Y.Iwasaki,“QuantumTheoryofGravitationvs.ClassicalTheory,”
Prog.Theor.Phys.46,1587(1971).[18]K.HiidaandH.Okamura,“GaugeTransformationandGravitational
Potentials,”Prog.Theor.Phys.47,1743(1972).[19]B.M.BarkerandR.F.O’Connell,“PostnewtonianTwoBodyAndN
BodyProblemsWithElectricChargeInGeneralRelativity,”J.Math.Phys.18,1818(1977)[Erratum-ibid.19,1231(1978)].[20]B.M.BarkerandR.F.O’Connell,“GravitationalTwoBodyProblem
WithArbitraryMasses,Spins,AndQuadrupoleMoments,”Phys.Rev.D12(1975)329.[21]G.Modanese,“Potentialenergyinquantumgravity,”Nucl.Phys.B
434(1995)697[arXiv:hep-th/9408103].[22]DiegoA.R.DalvitandFranciscoD.Mazzitelli,Phys.Rev.D50:1001-1009,1994[arXiv:gr-qc/9402003].[23]K.A.Kazakov,“Onthenotionofpotentialinquantumgravity,”Phys.
Rev.D63,044004(2001)[arXiv:hep-th/0009220].
25
[24]J.F.Donoghue,B.R.Holstein,B.GarbrechtandT.Konstandin,
“QuantumcorrectionstotheReissner-NordstroemandKerr-Newmanmetrics,”Phys.Lett.B529(2002)132[arXiv:hep-th/0112237].[25]N.E.J.Bjerrum-Bohr,“Leadingquantumgravitationalcorrectionsto
scalarQED,”Phys.Rev.D66,084023(2002)[arXiv:hep-th/0206236].[26]N.E.J.Bjerrum-Bohr,J.F.Donoghue,andB.R.Holstein,”Quantum
CorrectionstotheSchwartzschildandKerrMetrics,”inpreparation.[27]J.F.DonoghueandT.Torma,“Onthepowercountingofloopdia-gramsingeneralrelativity,”Phys.Rev.D,4963(1996)[arXiv:hep-th/9602121].[28]K.BeckerandM.Becker,“Quantumgravitycorrectionsfor
Schwarzschildblackholes,”Phys.Rev.D60,026003(1999)[arXiv:hep-th/9810050].
26
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务