与三角形外心、内心、重心相关的关系和定理
三角形外心、内心、重心相关的关系和定理
。
外心即外接圆的圆心,此时三角形三个顶点在圆上,圆心到三个顶点的距离相等,即外心到三角形三个顶点距离相等,因此外心是三角形三条边的中垂线的交点。
内心即内切圆的圆心,此时三角形三条边都与圆相切,圆心到三条边的距离相等,即内心到三角形三个顶点距离相等,因此内心是三角形三个角的角平分线交点。
重心即三条中线的交点,分别通过三个顶点与对边中点相连,中线的交点即是重心,重心把三条中线分成1:2,即重心与中点的距离与重心与顶点的距离比为1:2。
垂心即三条高的交点,分别通过三个顶点作对边作垂线,垂线的交点即是垂心。 重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的三个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形三个顶点距离的平方和最小。 外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).
1 / 2
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
4、外心到三顶点的距离相等 内心的性质:
1、三角形的三条内角平分线交于一点。该点即为三角形的内心。
2直角三角形的内心到边的距离等于两直角边的和、减去斜边的差的二分之一。
3、O为三角形的内心,A、B、C分别为三角形的三个顶点,延长AO交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC
4(内角平分线分三边长度关系)△ABC中,0为内心,∠A、∠B、∠C的内角平分线分别交BC、AC、AB于Q、P、R,则BQ/QC=c/b, CP/PA=a/c, BR/RA=a/b.
5、内心到三角形三边距离相等。
2 / 2
因篇幅问题不能全部显示,请点此查看更多更全内容