2008年高考全国二卷理科数学题及其答案
2008年普通高等学校招生全国统一考试(全国卷2数学)
理科数学(必修+选修Ⅱ)
第Ⅰ卷
一、选择题
1.设集合M{mZ|3m2},N{nZ|1≤n≤3},则MA.01,
B.101,,
C.0,1,2
3N( )
D.101,,,2
2.设a,bR且b0,若复数(abi)是实数,则( ) A.b3a 3.函数f(x)22B.a3b
22C.b9a
22D.a9b
221x的图像关于( ) xA.y轴对称 B. 直线yx对称 C. 坐标原点对称 D. 直线yx对称
1)alnx,b2lnx,clnx,则( ) 4.若x(e,,A.aB.cC. bD. b x≥2.A.2 B.4 C.6 D.8 6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A. 9 29B. 10 29C. 19 29D. 20 297.(1x)6(1x)4的展开式中x的系数是( ) B.3 C.3 D.4 A.4 8.若动直线xa与函数f(x)sinx和g(x)cosx的图像分别交于M,N两点,则MN的最大值为( ) A.1 B.2 C.3 D.2 x2y21的离心率e的取值范围是( ) 9.设a1,则双曲线22a(a1)2) A.(2,B.(2,5) 5) C.(2, D.(2,5) 第1页(共11页) 10.已知正四棱锥SABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为( ) A. 1 3B.2 3C.3 3D. 2 311.等腰三角形两腰所在直线的方程分别为xy20与x7y40,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A.3 B.2 C.1 3D.1 212.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A.1 B.2 C.3 D.2 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量a(1,,2)b(2,3),若向量ab与向量c(4,7)共线,则 . 14.设曲线ye在点(0,1)处的切线与直线x2y10垂直,则a . 15.已知F是抛物线C:y4x的焦点,过F且斜率为1的直线交C于A,B两点.设FAFB,则FA与FB的比值等于 . 16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件② . (写出你认为正确的两个充要条件) 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在△ABC中,cosB(Ⅰ)求sinA的值; (Ⅱ)设△ABC的面积S△ABC2ax54,cosC. 13533,求BC的长. 218.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为10.999(Ⅰ)求一投保人在一年度内出险的概率p; (Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元). 第2页(共11页) 104. 19.(本小题满分12分) 如图,正四棱柱ABCDA1B1C1D1中,AA12AB4,点E在CC1上且C1E3EC. 平面BED; (Ⅰ)证明:AC1(Ⅱ)求二面角A1DEB的大小. 20.(本小题满分12分) A1 D1 C1 B1 E D A B C n*设数列an的前n项和为Sn.已知a1a,an1Sn3,nN. n(Ⅰ)设bnSn3,求数列bn的通项公式; (Ⅱ)若an1≥an,nN,求a的取值范围. *21.(本小题满分12分) 设椭圆中心在坐标原点,A(2,,0)B(0,1)是它的两个顶点,直线ykx(k0)与AB相交于点D,与椭圆相交于E、F两点. (Ⅰ)若ED6DF,求k的值; (Ⅱ)求四边形AEBF面积的最大值. 22.(本小题满分12分) 设函数f(x)sinx. 2cosx(Ⅰ)求f(x)的单调区间; (Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围. 第3页(共11页) 2008年参考答案和评分参考 一、选择题 1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 部分题解析:2. 设a,bR且b0,若复数(abi)3是实数,则( ) A.b3a 22B.a3b 22C.b9a 22D.a9b, 22解:(abi)3a33a2bi3a(bi)2(bi)3 (←考查和的立方公式,或二项式定理) (a3ab)(3abb)i (←考查虚数单位i的运算性质) 3223 R (←题设条件) ∵a,bR且b0 ∴ 3abb0 (←考查复数与实数的概念) ∴ b3a. 故选A. 22236. 从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又 有女同学的概率为( ) A. 9 29B. 10 29C. 19 29D. 20 29思路1:设事件A:“选到的3名同学中既有男同学又有女同学”,其概率为: 2112C20C10C20C10 (←考查组合应用及概率计算公式) P(A)3C302019109102021 (←考查组合数公式) 2130292832110191010109 (←考查运算技能) 10291420 29故选D. 思路2:设事件A:“选到的3名同学中既有男同学又有女同学”, 事件A的对立事件为A:“选到的3名同学中要么全男同学要么全女同学” 其概率为: P(A)1P(A) (←考查对立事件概率计算公式) 33C20C10 1 (←考查组合应用及概率计算公式) 3C30第4页(共11页) 201981098321(←考查组合数公式) 13213029283212019181098 (←考查运算技能) 30292820 29故选D. 12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则 两圆的圆心距等于( ) A.1 B.2 C.3 D.2 分析:如果把公共弦长为2的相互垂直的两个截球面圆,想成一般情况,问题解决起来就比较麻烦,许多考生就是因为这样思考的,所以浪费了很多时间才得道答案;但是,如果把公共弦长为2的相互垂直的两个截球面圆,想成其中一个恰好是大圆,那么两圆的圆心距就是球心到另一个小圆的距离3,问题解决起来就很容易了. 二、填空题 13.2 14.2 5.322 16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解: 512,得sinB, 131343由cosC,得sinC. 55(Ⅰ)由cosB所以sinAsin(BC)sinBcosCcosBsinC(Ⅱ)由S△ABC33. ···································· 5分 6533133得ABACsinA, 22233由(Ⅰ)知sinA, 65故ABAC65, ························································································ 8分 ABsinB20AB, 又ACsinC132013AB265,AB. 故132ABsinA11. ·所以BC········································································ 10分 sinC2 18.解: 各投保人是否出险互相独立,且出险的概率都是p,记投保的10 000人中出险的人数为, 第5页(共11页) 则~B(10,p). (Ⅰ)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当0, ·················································································································· 2分 4P(A)1P(A) 1P(0) 1(1p)10, 又P(A)10.9991044, 故p0.001. ······························································································ 5分 (Ⅱ)该险种总收入为10000a元,支出是赔偿金总额与成本的和. 支出 1000050000, 盈利 10000a(1000050000), 盈利的期望为 E10000a10000E50000, ·········································· 9分 10)知,E1000010, 由~B(10,E104a104E5104 433104a1041041035104. E≥0104a104105104≥0 a105≥0 a≥15(元). 故每位投保人应交纳的最低保费为15元. ························································· 12分 19.解法一: D1 C1 依题设知AB2,CE1. A1 (Ⅰ)连结AC交BD于点F,则BDAC. B1 由三垂线定理知,BDA1C. ········································································ 3分 在平面A1CA内,连结EF交A1C于点G, H E G F B C AA1AC22, 由于 FCCE第6页(共11页) D A 故Rt△A1AC∽Rt△FCE,AA1CCFE, CFE与FCA1互余. 于是A1CEF. A1C与平面BED内两条相交直线BD,EF都垂直, 所以A1C平面BED. ················································································· 6分 (Ⅱ)作GHDE,垂足为H,连结A1H.由三垂线定理知A1HDE, 故A1HG是二面角A1DEB的平面角. ······················································· 8分 EFCF2CE23, CG3CECF222,EGCECG. 3EF3EG11EFFD2. ,GHEF33DE15又AC1AA12AC226,A1GA1CCGAG155. HG56. 3tanA1HG所以二面角A1DEB的大小为arctan55. ·················································· 12分 解法二: 以D为坐标原点,射线DA为x轴的正半轴, 建立如图所示直角坐标系Dxyz. z D1 A1 C1 B1 2,,0)C(0,2,,0)E(0,2,,1)A1(2,0,4). 依题设,B(2, D x A B E C y DE(0,2,,1)DB(2,2,0), ··································································· 3分 AC(2,2,4),DA1(2,0,4). ·1(Ⅰ)因为ACDB0,ACDE0, 11故A1CBD,A1CDE. 又DBDED, 第7页(共11页) 平面DBE.·所以AC················································································· 6分 1(Ⅱ)设向量n(x,y,z)是平面DA1E的法向量,则 nDE,nDA1. 故2yz0,2x4z0. 令y1,则z2,x4,n(4,···················································· 9分 1,2). ·等于二面角A1DEB的平面角, n,AC1cosn,A1CnA1CnA1C14. 4214. ················································· 12分 42所以二面角A1DEB的大小为arccos20.解: nn(Ⅰ)依题意,Sn1Snan1Sn3,即Sn12Sn3, 由此得Sn13n12(Sn3n). ······································································· 4分 因此,所求通项公式为 bnSn3n(a3)2n1,nN*.① ····························································· 6分 nn1*(Ⅱ)由①知Sn3(a3)2,nN, 于是,当n≥2时, anSnSn1 3n(a3)2n13n1(a3)2n2 23n1(a3)2n2, an1an43n1(a3)2n2 n23n2212a3, 2当n≥2时, 3an1≥an122n2a3≥0 第8页(共11页) a≥9. 又a2a13a1. 综上,所求的a的取值范围是9,························································· 12分 .· x2y21, 21.(Ⅰ)解:依题设得椭圆的方程为4直线AB,EF的方程分别为x2y2,ykx(k0). ····································· 2分 如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1x2, 且x1,x2满足方程(14k)x4, 故x2x122y B O E F D A x 214k2.① 由ED6DF知x0x16(x2x0),得x0由D在AB上知x02kx02,得x0所以 1510(6x2x1)x2; 277714k2. 12k210, 12k714k22化简得24k25k60, 23或k. ····················································································· 6分 38(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E,F到AB的距离分别为 解得kh1x12kx125x22kx2252(12k14k2)5(14k)2, h22(12k14k2)5(14k)2. ······················································ 9分 又AB2215,所以四边形AEBF的面积为 S1AB(h1h2) 21254(12k)5(14k)2 第9页(共11页) 2(12k)14k2 14k24k 214k2≤22, 当2k1,即当k1时,上式取等号.所以S的最大值为22. ························· 12分 2解法二:由题设,BO1,AO2. 设y1kx1,y2kx2,由①得x20,y2y10, 故四边形AEBF的面积为 SS△BEFS△AEF x22y2 ··································································································· 9分 (x22y2)2 22x24y24x2y2 22≤2(x24y2) 22, 当x22y2时,上式取等号.所以S的最大值为22. ······································· 12分 22.解: (Ⅰ)f(x)(2cosx)cosxsinx(sinx)2cosx1.····························· 2分 (2cosx)2(2cosx)22π2π1x2kπ(kZ)时,cosx,即f(x)0; 3322π4π1x2kπ当2kπ(kZ)时,cosx,即f(x)0. 332当2kπ因此f(x)在每一个区间2kπ2π2π,2kπ(kZ)是增函数, 332π4π2kπf(x)在每一个区间2kπ,··························· 6分 (kZ)是减函数. ·33(Ⅱ)令g(x)axf(x),则 第10页(共11页) g(x)a2cosx1 2(2cosx)a23 2cosx(2cosx)221113a. 32cosx3故当a≥1时,g(x)≥0. 3又g(0)0,所以当x≥0时,g(x)≥g(0)0,即f(x)≤ax. ······················· 9分 当0a1时,令h(x)sinx3ax,则h(x)cosx3a. 3故当x0,arccos3a时,h(x)0. 因此h(x)在0,arccos3a上单调增加. 故当x(0,arccos3a)时,h(x)h(0)0, 即sinx3ax. 于是,当x(0,arccos3a)时,f(x)当a≤0时,有fsinxsinxax. 2cosx3ππ10≥a. 22213. ·因此,a的取值范围是,·································································· 12分 第11页(共11页) 因篇幅问题不能全部显示,请点此查看更多更全内容