压轴专题
一、复习旧知
高考物理压轴题具有对考生的阅读理解能力、综合分析能力、应用数学知识解决物理问题能力等多项能力的考查功能,在高考中有着举足轻重的作用.物理压轴题往往含有多个物理过程或具有多个研究对象,需要应用多个物理概念和规律进行求解,难度较大. 从知识体系来划分,可分为力学综合题、电学综合题或力、电、热学综合题、电、光、原子物理综合题等, 其中的力学综合题与电学综合题,在物理试卷中占有重要地位
二、重难、考点
教学重点:力学综合题、电磁学综合题、力学和电学综合题。 教学难点:力学综合题、电磁学综合题、力学和电学综合题。
三、考点:力学综合题、电磁学综合题、力学和电学综合题。
1、力学综合题的求解思路
力学综合题包含两大方面的规律:一是物体受力的规律,二是物体运动的规律.物体的运动情况是由它的初始条件及它的受力情况决定的,由于力有三种作用效果:①力的瞬时作用效果——使物体产生形变或产生加速度;②力对时间的积累效果——冲量;③力对空间的积累效果——功,所以,加速度、冲量和功就是联系力和运动的三座桥梁,与上述三座桥梁相关的物理知识有牛顿运动定律、动量知识(包括动量定理和动量守恒定理)、机械能知识(包括动能定理和机械能守恒定律).力学综合题注重考查物理学中的两个重要观点——动量、能量,要求考生有扎实的基础知识和良好的解题思维,能够进行正确的受力分析和运动分析,解题的关键是要理清物理情景中出现的“过程”、“状态”。
2、电学综合题的求解思路
电磁学包括静电场、恒定电流、磁场、电磁感应、交变电流和电磁场等方面的知识,研究电场、磁场和它们对电荷的作用,研究的是直流电路及交流电路的有关规律.电磁学中的“场”与“路”的知识既各自,又相互联系,全部的电磁学问题,以“场”为基础,进而研究“场”与“路”的关系。
3、力学和电学综合题的求解思路
力电综合题往往以带电粒子在复合场中的运动为背景命题,融合力学、电磁学知识,构思新颖、综合性强.求解这类综合题要注意从如下几方面去把握:
(1)正确分析带电粒子的受力情况.判断带电粒子的重力是否忽略不计,电场力和洛伦兹力的大小和方向怎样,这些问题都必须根据题意以及各场力的特征作出全面的分析。
(2)正确分析带电粒子运动情况.要确定带电粒子做什么运动? 有哪些运动过程? 近年高考试题中最典型的运动状态有平抛运动和匀速圆周运动等。
(3)善于从功和能的角度分析问题.洛伦兹力不做功,重力和电场力做功与路径无关,做正功,势能减小,做负功,势能增大。
(4)从动量和电量切入问题.对于两个相互作用的带电粒子或系统,注意运用动量守恒和电量守恒的思想分析。
(5)灵活运用力学规律.在正确而全面的分析基础上,画好必要的受力图和运动轨迹图,再根据带电粒子的运动状态和过程,灵活地运用平衡条件、牛顿定律、动量守恒定律、功能关系等规律来求解。
四、例题讲解
【例1】:如图所示匀强磁场中固定放置一根串接一电阻R的直角形金属导轨aoB另有两根金属导轨c、d分别平行于oa、oB放置.保持导轨之间接触良好,金属导轨的电阻不计.现经历以下四个过程:①以速率V移动d,使它与oB的距离增大一倍;②再以速率V移动c,使它与oa的距离× 减小一半;③然后,再以速率2V移动c,使它回到原处;
× ④最后以速率2V移动d,使它也回到原处.设上述四个过o 程中通过电阻R的电量的大小依次为Q1、Q2、Q3和Q4,× 则( )
A、Q1=Q2=Q3=Q4 B、Q1=Q2=2Q3=2Q4 C、2Q1=2Q2=Q3=Q4 D、Q1≠Q2=Q3≠Q4
× R ×
×
×
×
× × × a × × × × c b × × d × × × × × × × ×
【对应练习1】:如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求: (1)线框在下落阶段匀速进人磁场时的速度V2; (2)线框在上升阶段刚离开磁场时的速度v1;
(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.
B b a
【例2】:如图,一个边长为l的正方形虚线框内有垂直于纸面向里的匀强磁场;一个边长也为l的正方形导线框所在平面与磁场方向垂直;虚线框对角线ab与导线框的一条边垂直,ba的延长线平分导线框.在t=0时,使导线框从图示位置开始以恒定速度沿ab方向移动,直到整个导线框离开磁场区域.以i表示导线框中感应电流的强度,取逆时针方向为正.图2中表示i-t关系的图示中,可能正确的是( )
a
b 【对应练习2】:矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,图中正确的是( )
【例3】:两屏幕荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2︰5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。
【对应练习3】:在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度。
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
【对应练习3】:如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2。一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?
φ Q R A d O P D
B1
v
O
B2
【例4】:如图11所示在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ边界射出磁场。第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。不计重力的影响,粒子加速前速度认为是零,求:
(1)为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。 (2)加速电压U1U的值。
2
MP×××××B×θ××LNQ
【对应练习4】:图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在y轴上距坐标原点L=0.50m的P处为离子的入射口,在y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。 (1)求上述粒子的比荷
q; m(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;
(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
【例5】:如图所示空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度B=1T,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为d=0.5m,现有一边长l=0.2m、质量m=0.1kg、电阻R=0.1Ω的正方形线框MNOP以v0=7m/s的初速从左侧磁场边缘水平进入磁场,求
(1)线框MN边刚进入磁场时受到安培力的大小F。
(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q。 (3)线框能穿过的完整条形磁场区域的个数n。
线框穿过第1个条形磁场左边界过程中:
FBlIBlBl2/tR
根据动量定理:Ftmv1mv0
解得:B2l3Rmv1mv0 同理线框穿过第1个条形磁场右边界过程中有:
B2l3Rmv/1mv1
所以线框穿过第1个条形磁场过程中有:
2B2l3mv/R1mv0
设线框能穿过n个条形磁场,则有:
2B2nl3R0mv0
【对应练习5】:如图所示一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图15(b)所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t0滑到圆弧顶端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。
【对应练习5】:如如图所示倾角为370的光滑绝缘的斜面上放着M=1kg的导轨abcd,ab∥cd。另有一质量m=1kg的金属棒EF平行bc放在导轨上,EF下侧有绝缘的垂直于斜面的立柱P、S、Q挡住EF使之不下滑,以OO′为界,斜面左边有一垂直于斜面向下的匀强磁场。右边有平行于斜面向下的匀强磁场,两磁场的磁感应强度均为B=1T,导轨bc段长L=1m。金属棒EF的电阻R=1.2Ω,其余电阻不计,金属棒与导轨间的动摩擦因数μ=0.4,开始时导轨bc边用细线系在立柱S上,导轨和斜面足够长,当剪断细线后,试求: (1)求导轨abcd运动的最大加速度? (2)求导轨abcd运动的最大速度?
(3)若导轨从开始运动到最大速度的过程中,流过金属棒EF的电量q=5C,则在此过程中,系统损失的机械能是多少?(sin370=0.6)
【对应练习5】:图甲所示, 两根足够长的平行光滑金属导轨固定放置在水平面上,间距L=0.2m,一端通过导线与阻值为R=1Ω的电阻连接;导轨上放一质量为m=0.5kg的金属杆,金属杆与导轨的电阻均忽略不计.整个装置处于竖直向上的大小为B=0.5T的匀强磁场中.现用与导轨平行的拉力F作用在金属杆上,金属杆运动的v-t图象如图乙所示(取重力加速度g=10m/s2)求: (1)t=10s时拉力的大小及电路的发热功率? (2)在0~10s内,通过电阻R上的电量? R F B
图甲
v (m/s) 4 2 0 5 10 15 t/s 图乙
【对应练习5】:如图所示间距L、光滑足够长的金属导轨(金属导轨的电阻不计)所在斜面倾角为
两根同材料、长度均为L、横截面均为圆形的金属棒CD、PQ放在斜面导轨上已知CD棒的质量
为m、电阻为R,PQ棒的圆截面的半径是CD棒圆截面的2倍。磁感应强度为B的匀强磁场垂直于导轨所在平面向上两根劲度系数均为k、相同的弹簧一端固定在导轨的下端另一端连着金属棒CD开始时金属棒CD静止,现用一恒力平行于导轨所在平面向上拉金属棒PQ.使金属棒PQ由静止开始运动当金属棒PQ达到稳定时弹簧的形变量与开始时相同,已知金属棒PQ开始运动到稳定的过程中通过CD棒的电量为q,此过程可以认为CD棒缓慢地移动,已知题设物理量符合的关系式,求此过程中: (l)CD棒移动的距离? (2)PQ棒移动的距离? (3)恒力所做的功?
qRk4mgsinBL5
【对应练习5】:如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ。整个装置处在磁感应强度为B、方向垂直于导轨平面且向上的匀强磁场中。AC端连有阻值为R的电阻。若将一质量为M、垂直于导轨的金属棒EF在距BD端s处由静止释放,则棒滑至底端前会有加速和匀速两个运动阶段。现用大小为F、方向沿斜面向上的恒力把金属棒EF从BD位置由静止推至距BD端s处,此时撤去该力,金属棒EF最后又回到BD端。求: (1)金属棒下滑过程中的最大速度。
(2)金属棒棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒及导轨的电阻不计)
B D
E s F A R C θ
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务