您好,欢迎来到华佗健康网。
搜索
您的当前位置:首页小学数学教学中如何培养学生的几何直观能力

小学数学教学中如何培养学生的几何直观能力

来源:华佗健康网


从几何直观的角度 解读新课程下的教学设计

新老课标提出的关键词进行对比,我们发现在2011版出现的几何直观是新增加的内容。。本次论坛我通过这二点来谈谈我对直观几何的认识:一、简述“直观”和“几何直观”的价值及其特点。二、谈几何直观在新课程教学设计中的应用?

弗莱登塔尔所说,“几何直观能告诉我们什么是可能重要、可能有意义和可接近的,并使我们在课题、概念与方法的荒漠之中免于陷入歧途之苦。”康德的“缺乏概念的直观是空虚的,缺乏直观的概念是盲目的”从中我们相信几何直观在数学教学中有着重要的作用。

一:直观的认识:

【直观】用感官直接接受的;直接观察的; ~教具∣~教学。——《现代汉语词典》2002年增补本,商务印书馆

【克莱因】数学的直观就是对概念、证明的直接把握。

【心理学家】直观是从感觉的具体的对象背后,发现抽象的、理想的能力

结论:从这些描述中我觉得直观是1、一种能透过现象(或通过形象)看到本质、2、 一眼看出不同事物之间关联的洞察能力。可见,直观是一种感知,一种有洞察力的定势。

二:几何直观的认识:

【新数学课程标准】中这样解释道:主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何

直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。

【徐利治】也有对几何直观的描述:“几何直观是借助于见到的或想到的集合图形的形象关系,产生对数量关系的直接感知。”

【学者】这样描述:“几何直观是一种思维活动,是大脑对客观事物及其关系的一种直接的识别或猜测的心理状态。”

结论:从这些描述中,我是这样认识几何直观的:

1、几何直观是一种运用图形认识事物的能力,或者说是一种解决数学问题的思维方式。

2、这种能力可外化为一种在解决某些数学问题时的方法,这种方法区别于其他方法的典型特征在于它是以几何图形为工具——即“几何”两字的意义。

3、用这种方法解决问题,不是运用几何中常用的论证方法,而且通过经验、观察、想象等途径,直观地感知问题的结果或方向——即“直观”两字的意义。

根据这些认识

三:谈几何直观在新课程教学设计中的应用。

1. 几何直观在数与代数中的应用

华罗庚:数缺形时少直观,形缺数时难入微,数形结合百般好,割裂分家万事休。就是说将抽象的数学语言与直观的图像结合起来,在数与形之间互相转化,达到完美和谐的

结合。

例如1:三年级学生要学习同分子分数大小比较,这个知识相对比较抽象,学生较难理解。此时,学生如果能主动地采取画出(或想出)一下几何图像方式,然后通过观察图形的特点及联系,那么就能直观地解决问题,并理解“分子相同的分数,分母小的反而大”的道理。学生如果具备这种解决问题的思维方式,掌握这样的方法,那么就可以说学生有几何直观的能力。

图示:ppt

例如2:三年级的小数的性质和意义、

例如3:在一次听课过程中,听到了这样一节关于有余数除法的教学案例。老师请同学们拿出事先准备好的小棒,然后请同学们按老师要求做:请拿出四根小棒,摆出正方形。然后教师提问:“你摆了几个正方形,还剩几根小棒?”学生回答说:“摆了一个正方形,没有剩余小棒。”那我们怎么样用除法算式表示呢?学生说老师在黑板中摆出了除法算式。接着老师又请同学们拿出五根小棒,同样摆出正方形,然后提问,这回你摆了几个正方形,还剩几根小棒?学生回答后,教师提问。这个算式我们要怎么表示呢?后来在教师的陈述下引出了有余数除法算式的书写,认识了余数。通过直观的图形,学生了解了余数的含义,知道了为什么余数一定要比除数小的道理,能够正确书写算式。Ppt

小结:在数与代数教学中我们可以让学生通过经验、观察、想象等途径,直观地感知问题的结果和方向,把一些复杂的问题简单化。

2几何直观在图形与几何中的应用

在小学数学中,由于学生的年龄特点和认知特点,他们学习几何需要更多的经验入手,通过观察比较,或通过动手操作,从而获得对图形的认识,并发展空间观念。

例如1:三角形的内角和等于180,可以让学生每人用纸板剪一个三角形,然后把三角形的三个内角剪下来拼在一起,就可以直观的得到结论。(ppt)

例如2:在学习两直线相交的相关知识时,我们引导学生通过观察、比较得出对顶角(顶角)相等的结论。若学生有疑义,则借助他们的工具来测量,那就一定得出这样的结论 。从直观的测量、比较中培养几何直观的能力。

例如3:学习平行四边形面积时,我们也是让学生通过观察,想象到沿着平行四边形的高剪下一个三角形拼到另一侧就可以转化为长方形,然后进行对比,找到两者之间的联系,从而得出面积公式。这种以观察、操作、为手段得出结论的集合学习方法,就是直观几何。 因此小学图形和几何教学中就是直观几何。

小结:利用图形几何解决数学问题,直观的感知使抽象变的具体。

3、几何直观在综合与实践中的应用

心理学家皮亚杰根据儿童的认知理论将儿童化为四个阶段,而小学阶段的孩子正处于具体运算水平阶段。此时的孩子很难理解复杂的数量关系,我们只有借助图形使之直观化,形象化,简单化。才能帮助学生有效寻求解题策略。

例如1:在二年级的期末复习中有这样的一道创新思维题:学校门前有6盆玫瑰花,如果每两盆花之间,放入三盆月季花,那么一共要放多少盆月季花呢?在处理这道题时,

建议学生采用画示意图的方法,(如下图:三角形代表玫瑰花,圆形代表月季花) 对于二年级孩子来说,这样的处理方式,学生很快弄清了关系,通过课后调查,学生通过几何直观的形式,可以解决问题,准确率在50%以上。

例如2:四年级的植树问题 ,也需要我们采用几何直观的方式——画线段图。通过线段图的分析,学生很容易掌握了两端都栽,两端不栽,和只栽一端的情况。(ppt)

总结:

教学设计已经走向多流派、多元化。而强调知识之间有机地融合、依赖几何直观的“直观型”课程成为数学课程设计的主流之一。新课程已经把几何直观看作是贯穿小学数学教学课程的线索之一。从数与代数到综合与实践中的应用此外,还有概率与统计中也有几何直观的应用,图形与几何就更离不开几何直观。可见,几何直观是小学数学教学设计中必不可少的有效工具。从以上的设计中我发现培养几何直观能力我们需要:1、引导学生学会观察。2、加强练习操作。3、造模型,培养学生应用知识的能力。

充分利用几何直观来揭示研究对象的性质和关系,使学生认识几何直观在数学学习中的意义和作用,同时也是学会数学的一种思考方式和学习方式。

题外话:

以上是我对几何直观这个新的核心词的浅显理解。但事实上,对于几何直观这个《课程标准》中新提的名词,我还有许多不明之处。比如,小学数学教材中承载几何直观能力培养的内容具体有哪些?我们如何教学,才可以说正确地展示了几何直观的方法?培养学生的几何直观能力到底有哪些可借鉴的策略?对于小学中的几何直观《课程标准》只有在

第二学段提了一句“感受几何直观的作用(在第二学段”学段目标“中的“数学思考”部分)而“感受”是一个描述过程目标的行为动词,这是否意味中小学阶段的几何直观只需要感受即可?类似的疑问还有不少,为此今后在教学中我要继续钻研,将几何直观更有效的落实在我的课堂教学中,更要将几何直观更有效的落实在学生的学习中。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务