Effect of atomic transfer on the decay of a Bose-Einstein condensate
EffectofatomictransferonthedecayofaBose-Einsteincondensate
arXiv:quant-ph/0303134v1 21 Mar 2003PawelZi´n*§,AndrzejDragan*§,SzymonCharzy´nski*‡,
NorbertHerschbach*,PaulTol*,WimHogervorst*andWimVassen*
*LaserCentreVrijeUniversiteit,DeBoelelaan1081,1081HVAmsterdam,TheNetherlands§WydzialFizyki,UniwersytetWarszawski,Ho˙za69,PL-00-681Warszawa,Poland‡CentrumFizykiTeoretycznej,Al.Lotnik´ow32/4602-668Warszawa,PolandAbstract.WepresentamodeldescribingthedecayofaBose-Einsteincondensate,whichassumesthesystemtoremaininthermalequilibriumduringthedecay.Weshowthatunderthisassumptiontransferofatomsoccursfromthecondensatetothethermalcloudenhancingthecondensatedecayrate.
PACSnumbers:03.75.Hh,05.30.Jp,34.50.Fa
Submittedto:J.Phys.B:At.Mol.Opt.Phys.
LettertotheEditor1.Introduction
2
RapidadvancesinexperimentaltechniquesoflasercoolingandtrappingmadeitpossibletoachieveBose-Einsteincondensation(BEC)inweaklyinteractingsystems.OneofthemanyinterestingaspectsofBECindilutegasesisthedynamicsofgrowthanddecayofthecondensate[1,2,3].Bose-Einsteincondensatescanhavelonglifetimesrangingfrom2s[4]uptomorethan10s[1,5].Thisfinitelifetimeismainlycausedbyinelasticcollisionsbetweencondensateatomsandbycollisionswithparticlesfromthebackgroundgas,resultinginatomlossandheatingofthesystem.Manyexperimentswithcondensatescanbeperformedonatimescaleshortcomparedtothecondensatelifetime,suchthatdecayeffectsarenotimportant.Thisis,however,notalwaysthecaseandsomeexperimentsspecificallyfocusoncondensatedecay[1].Hence,itisimportanttomodelthedecayofacondensateindetail,takingintoaccountallprocesseswhichsignificantlycontribute.Inliteraturecondensatedecayduetoinelasticcollisionsandcollisionswithbackgroundgasatomsaswellasheatingeffectsarediscussed.Toourknowledge,thetransferofatomsbetweenthecondensateandthethermalcloudoccuringdynamicallyasaconsequenceofthermalizationofthesystemhasnotyetbeentakenintoaccount.Wewillshowthatthisprocessplaysanimportantrolewhenthenumberofatomsinthecondensateisofthesameorderorsmallerthanthenumberinthethermalcloud.Itseffectcouldonlybeneglectedinexperimentswithlargecondensatefractionswhichareoftenobtainedbyremovalofmostofthethermalpartwithanrf-knife,orinsituationsinwhichourassumptionoffastthermalizationisnotfulfilled.
Thepresentworkconcentratesonthedecayofcondensatesinthepresenceofaconsiderablylargethermalfraction.WeassumethermalequilibriumduringthedecayofthecondensatewhichisjustifiedinmostexperimentswithBECindiluteatomicgases.Sinceelasticcollisionratesaretypicallylarge(103s−1[4,6]),oneexpectsthermalizationtooccurveryrapidly[7]comparedtotherateofchangeinthermodynamicvariablesduringthedecay.Usingthesimplecondensategrowthequation[2]weinvestigatednumericallytheeffectofdynamicaldisturbancescausedbyatomlossandheatingfrominelasticcollisionsonasystemoriginallyinthermalequilibrium.Wefoundthatthesystemstaysveryclosetothermalequilibriumunderconditionstypicallyencounteredintheexperimentswithdiluteatomicgases.
Althoughourmodelincorporatestwo-andthree-bodycollisionsitdoesnottakeintoaccountsubsequentsecondaryeffects.Forinstance,theeffectsofinducedlocalvariationsinthemean-fieldinterparticleinteraction[8]areneglected.Alsosecondarycollisionsofreactionproductswithatomsofthecondensateorthethermalcloudarenotaccountedfor.Avalanches,recentlydiscussedbySchusteretal[9],arethereforebeyondthescopeofthiswork.Theymaybeincorporatedlater.
Thisletterisorganizedasfollows.InSec.2wederiveasimpleanalyticalformulaforthedecayofacondensateofnon-interactingbosonsincludingonlylossesduetocollisionswithbackgroundgasparticles.Theexpressionsderivedinthissectionshowtheexistenceoftransferofatomsbetweencondensateandthermalcloudandthesignificant
LettertotheEditor3
reductionincondensatelifetimethatmayoccur.InSec.3wepresentamorecompletedynamicalmodelofcondensatedecayusingthemean-fieldtheoryforweakly-interactingbosonsandincludingalsolossesbyinelastictwo-andthree-bodycollisions.InSec.4wepresent,asanexample,numericalsimulationsofcondensatedecayinmetastablehelium.
2.Atomictransfer
Apartfromelasticcollisionsthatkeepthesysteminthermalequilibrium,inthissectionweassumetheatomstoundergoonlycollisionswithbackgroundgasparticles,inducingatomlosses.Forsimplicityweconsiderasystemofnon-interactingbosons.AtatemperatureTbelowthecriticaltemperatureTc=ω[N/g3(1)]1/3/kthenumberofatomsNTinthethermalcloudisgivenby[10]
kT
NT=g3(1)
30
kT
τ
˙C+N˙T=−1N=N
τ
2
˙C+E˙T=−1E=E
(ωx+ωy+ωz)beingthegroundstateenergyofthetrap.UsingEq.(2)thetime
˙T=4derivativesE
NT
1−ε0NT/ET
4τNT,
(5)
τ
LettertotheEditor4
whereweusedε0NT/ET≪1,neglectingtheenergyofacondensateatomcomparedtotheaverageenergyperatominthethermalcloud.SubstitutinginEq.(3)yields
1˙C=−NT.(6)N
4Thissimpleanalysisshowsthatforacondensatecoexistinginthermalequilibriumwith
˙C=−NC/τnorN˙T=−NT/τholdsforthedecayathermalcloudinatrapneitherN
inducedbycollisionswithbackgroundparticles.Conservationofenergyandnumberofatomscombinedwithrapidthermalizationinevitablyresultsintransferofatomsfromcondensatetothermalcloudtherebyenhancingthedecayrateofthecondensate.Especiallywithaconsiderablefractionofthermalatomsinthesystemthisaffectsthedecayofthecondensate.OnlyinthelimitofalargecondensatefractionEq.(6)becomes˙C=−NC/τ.N
3.Interactingmodel
Inordertoparametrizetheequilibriumstateofthegas,wewillusethetemperatureTandthenumberofatomsinthecondensateNCasindependentvariablesfullydescribingthestateofthesystem.Wewillstartwiththestationary“two-gas”modelproposedbyDoddetal[11],inwhichatomsofthethermalclouddonotaffectthecondensatedescribedbythestationaryGross-Pitaevskii(GP)equation.Thethermalcloudatomsdonotinteractwitheachother(exceptforthermalization)buttheyareinfluencedbythecondensatethroughthemean-fieldpotential2U0nC(r).Here,thecontactpotentialU0=4π2a/mexpressesthebinaryinteractionbetweenatomswithscatteringlengthaandmassm,andnC(r)denotesthespatialdensityofthecondensatewhichcanbecalculatedfromtheGPequation.Weadditionallysimplifythetwo-gasmodelbydescribingthethermalcloudsemiclassically,replacingdiscretestateswhenevaluatingstatisticalaveragesbyacontinuumofstates.ThiswayweobtainanalyticalformulasfortheatomicdensitynT(r)[1]andenergydensityeT(r)inthethermalcloud:
d3p
2nT(r)=
expp
p2
(2π)3exp
−3
whereλ=
−(Veff(r)−µ)/kT
kTλg5/2e+2
−(Veff(r)−µ)/kT−3
Veff(r)λg3/2e,
p2
(8)
LettertotheEditor5
fromtheGPequation.TheydependonthenumberofatomsinthecondensateNC.ByintegratingthedensitiesnCandnToverspatialdegreesoffreedomweobtainthenumberofatomsinthethermalcloudNT(NC,T)andtheenergyofthethermalcloudET(NC,T).
WeareinterestedinthetimedependenceofNCandT.Asbefore,wewillfirstconsiderthedynamicsofthetotalnumberoftrappedatomsNandtotalenergyEasafunctionofNCandT.Theadvantageofthisapproachisthatwedonotneedtostatetransfertermsexplicitly;thetransferwillfollowfromouranalysisautomatically.
˙andE˙arerelatedtoN˙CandT˙viaThetotallossratesN
˙C˙=∂NT+1NN
∂NC
(9)
˙C,˙=∂ET+µNE
∂NCwithµ=∂EC/∂NC.ThereparametrizationisstraightforwardaswehavealreadyfoundexplicitexpressionsofalmostalltermsappearinginEq.(9).
Inordertodescribethedynamicsofthesystemwemustconsiderallrelevantprocessesaffectingitsstate.Weincludethreemaindynamicaleffectsthatmaycauselossesofatomsfromthesystem:two-bodyinelasticcollisions,three-bodyrecombinationsandcollisionswithbackgroundgas.Inthefollowingwewillneglect
˙isgivenby[12]:allsecondarycollisions.ThenthetotalatomiclossrateN
12˙=+n2−NC+2nCnT+nT
2!
123
3ξd3rn2,(10)CnT+3nCnT+nT
2!whereχandξaretwo-andthree-bodycollisionrateconstantsandτisthelifetimeofthetrap.
EachterminEq.(10)correspondstoalossprocessthatmayoccurinthesystem.Forexamplethetermξ3
2!
eT
n2n2µ+CT
LettertotheEditor
collisions.Finallyweendupwiththeexpressionforthetotalenergylossrate:
21˙n+nCnT+−E=
nTT
1µ
6
nT
1
23!n3C+
LettertotheEditor
54NC1053210
TΜK1.551.501.45
0
1ts
2
7
0.00.5
1.0ts
1.52.0
Figure1.DecayofacondensateofmetastableheliumatomswithNC(0)=5×105applyingourmodel(solidline)incomparisonwithasimplermodelneglectingthermalization(dashedline).TheinitialnumberofthermalatomsNT(0)=5×105[T(0)≈1.5µK].Thedottedlinerepresentsthedecayofapurecondensate:NT(0)=0(T=0K).Inset:dynamicsofthetemperatureinourmodel.
54NC1053210
TΜK2.72.62.50.0ts
0.50.00.5
1.0ts
1.52.0
Figure2.Decayofacondensatewithalargethermalcloud:NT(0)=2×106[T(0)≈2.5µK].FurtherdetailsasinthecaptionofFig.1.
enhancethecondensatedecayrate.Thiseffectcouldbeseenbyanexperimentalexaminationofthedecayrateasafunctionofthefractionofthermalatoms.Acknowledgements
ThisworkwasdoneaspartofastudentprojectwithintheSocrates-Erasmusexchangeprogramme2000/2001attheVrijeUniversiteitinAmsterdam.P.Z.acknowledgesthesupportfromPolishKBNgrant2/PO3/BO7819.WewouldliketothankMarekTrippenbachandKazimierzRzazewskiforusefuldiscussions.
LettertotheEditorReferences
8
[1]S¨odingJ,Gu´ery-OdelinD,DesbiollesP,ChevyF,InamoriHandDalibardJ1999Appl.Phys.B
69257
[2]GardinerCW,ZollerP,BallaghRJandDavisMJ1997Phys.Rev.Lett.791793[3]K¨ohlM,DavisMJ,GardinerCW,H¨anschTWandEsslingerT2002Phys.Rev.Lett.88080402[4]PereiraDosSantosF,L´eonardJ,JunminWang,BarreletCJ,PeralesF,RaselE,Unnikrishnan
CS,LeducMandCohen-TannoudjiC2001Phys.Rev.Lett.863459
[5]Stamper-KurnDM,AndrewsMR,ChikkaturAP,InouyeS,MiesnerH-J,StengerJandKetterle
W1998Phys.Rev.Lett.802027
[6]DavisKB,MewesM-O,AndrewsMR,vanDrutenNJ,DurfeeDS,KurnDMandKetterleW
1995Phys.Rev.Lett.753969
[7]SnokeDWandWolfeJP1989Phys.Rev.B394030[8]Gu´ery-OdelinDandShlyapnikovGV1999Phys.Rev.A61013605
[9]SchusterJ,MarteA,AmtageS,SangB,RempeGandBeijerinckHCW2001Phys.Rev.Lett.
87170404
[10]DalfovoF,GiorginiS,PitaevskiiLPandStringariS1999Rev.Mod.Phys.71463[11]DoddRJ,BurnettK,EdwardsMandClarkCW1999J.Phys.B324107
[12]KaganYu,SvistunovBVandShlyapnikovGV1985Pis’maZh.Eksp.Teor.Fiza.42169[JETP
Lett.42209].
[13]FedichevPO,ReynoldsMW,RahmanovUM,andShlyapnikovGV1996Phys.Rev.A531447[14]FedichevPO,ReynoldsMWandShlyapnikovGV1996Phys.Rev.Lett.772921
因篇幅问题不能全部显示,请点此查看更多更全内容