您好,欢迎来到华佗健康网。
搜索
您的当前位置:首页压轴题讲义四(学生)

压轴题讲义四(学生)

来源:华佗健康网
1.4 因动点产生的平行四边形问题

例一:如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=_______,PD=_______;

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.

图1 图2

提示:1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.

2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.

例二:如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.

(1)直接写出点A的坐标,并求出抛物线的解析式;

(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?

(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.

图1

提示:1.把△ACG分割成以GE为公共底边的两个三角形,高的和等于AD. 2.用含有t的式子把图形中能够表示的线段和点的坐标都表示出来.

3.构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在.

例三:已知平面直角坐标系xOy(如图1),一次函数yM在正比例函数y3x3的图象与y轴交于点A,点43x的图象上,且MO=MA.二次函数 2y=x2+bx+c的图象经过点A、M.

(1)求线段AM的长;

(2)求这个二次函数的解析式;

(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数y3x3的图象上,且四边4形ABCD是菱形,求点C的坐标.

提示:1.本题最大的障碍是没有图形,准确画出两条直线是基

本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数.

2.根据MO=MA确定点M在OA的垂直平分线上,并且求得点M的坐标,是整个题目成败的一个决定性步骤.

3.第(3)题求点C的坐标,先根据菱形的边长、直线的斜率,用待定字母m表示点C的坐标,再代入抛物线的解析式求待定的字母m.

例四:如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.

(1)求抛物线的解析式;

(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;

(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

图1 图2

提示:1.求抛物线的解析式,设交点式比较简便.

2.把△MAB分割为共底MD的两个三角形,高的和为定值OA.

3.当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q的上下位置关系,分两种情况列方程.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务