High harmonic generation in 真空装置
RAPIDCOMMUNICATION
Highharmonicgenerationinagas-filledhollow-corephotoniccrystalfiber
O.H.Heckl·C.R.E.Baer·C.Kränkel·S.V.Marchese·F.Schapper·M.Holler·T.Südmeyer·J.S.Robinson·J.W.G.Tisch·F.Couny·P.Light·F.Benabid·U.Keller
Received:28September2009/Publishedonline:14October2009
©TheAuthor(s)2009.ThisarticleispublishedwithopenaccessatSpringerlink.com
AbstractHighharmonicgeneration(HHG)ofintensein-fraredlaserradiation[1,2]enablescoherentvacuum-UV(VUV)tosoft-X-raysources.Intheusualsetup,energeticfemtosecondlaserpulsesarestronglyfocusedintoagasjet,restrictingtheinteractionlengthtotheRayleighrangeofthefocus.Theaveragephotonfluxislimitedbythelowcon-versionefficiencyandthelowaveragepowerofthecom-plexlaseramplifiersystems[3–6]whichtypicallyoperateatkilohertzrepetitionrates.Thisrepresentsaseverelimitationformanyexperimentsusingtheharmonicradiationinfieldssuchasmetrologyorhigh-resolutionimaging.DrivingHHGwithnovelhigh-powerdiode-pumpedmulti-megahertzlasersystemshasthepotentialtosignificantlyincreasetheaver-agephotonflux.However,thehigheraveragepowercomesattheexpenseoflowerpulseenergiesbecausetherepeti-tionrateisincreasedbymorethanathousandtimes,andefficientHHGisnotpossibleintheusualgeometry.Sofar,twopromisingtechniquesforHHGatlowerpulseen-ergiesweredeveloped:externalbuild-upcavities[7,8]and
O.H.Heckl()·C.R.E.Baer·C.Kränkel·S.V.Marchese·F.Schapper·M.Holler·T.Südmeyer·U.Keller
DepartmentofPhysics,InstituteforQuantumElectronics,ETHZurich,8093Zurich,Switzerlande-mail:heckl@phys.ethz.ch
J.S.Robinson
DepartmentofPhysics,UniversityofCaliforniaatBerkeleyandMaterialsSciencesDivision,LawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USA
J.W.G.Tisch
QuantumOpticsandLaserScienceGroup,BlackettLaboratory,ImperialCollegeLondon,LondonSW72BW,UK
F.Couny·P.Light·F.Benabid
DepartmentofPhysics,UniversityofBath,BathBA27AY,UK
resonantfieldenhancementinnanostructuredtargets[9].Herewepresentathirdtechnique,whichhasadvantagesintermsofeaseofHHGlightextraction,transversebeamqual-ity,andthepossibilitytosubstantiallyincreaseconversionefficiencybyphase-matching[10–14].Theinteractionbe-tweenthelaserpulsesandthegasoccursinaKagome-typeHollow-CorePhotonicCrystalFiber(HC-PCF)[15],whichreducesthedetectionthresholdforHHGtoonly200nJ.Thisnoveltypeoffiberguidesnearlyallofthelightinthehollowcore[16],preventingdamageevenatintensitiesrequiredforHHG.Ourfiberguided30-fspulseswithapulseenergyofmorethan10μJ,whichismorethanfivetimeshigherthanforanyotherphotoniccrystalfiber[17].
PACS42.81.Qb·42.65.Ky·42.55.Xi
370Infreespace,thenonlinearinteractionoflightwithgasesislimitedbydiffraction.Guidinglightingas-filledHC-PCFsenabledseveralmajorbreakthroughsinnonlinearoptics.Combiningasmallmodeareawithalongeffectivein-teractionlengthreducesthethresholdofvariousnonlin-earprocessesbyseveralordersofmagnitudeandincreasestheirefficiencydramatically[15,16,18].Accordingtonu-mericalsimulations,HC-PCFsalsohavealargepoten-tialforhighharmonicgeneration[11–13,17–19].Sofar,wave-guidequasi-phasematchingtechniquesforHHGwereonlyrealizedincapillarieswithdiametersabove100μm[20,21].HC-PCFsoffersubstantiallylowertransmissionlosses,smallermodeareas,andlargerdesignfreedom.How-ever,employingHC-PCFsintheareaofhighfieldscienceischallenging,becauseintensities>1013W/cm2havetobeachievedinthehollowcore.Thisisdifficultwithstan-dardphotonicbandgap(PBG)HC-PCFsbecausethefieldintensityinsurroundingsilicais≈1%ofthemaximumin-tensityinthecore[22].Sofar,thehighestguidedenergyre-portedforfemtosecondpulsepropagationinPBGHC-PCFsis1.8μJusing40-fspulses[17].Inourexperiment,weusedaKagome-typeHC-PCFforwhichthefieldoverlapismorethantentimeslower[16].IncontrasttoPBGHC-PCF,theguidingmechanismisnotbasedonabandgapbutonthein-hibitedcouplingbetweenthecoreandcladdingmodes[16].Thefiberisimmunetocore-modeandsurface-modecou-pling[23],whichrepresentsoneofthemajorsourcesofop-ticaloverlapwiththesilicasurroundingthefibercore.Sincethedamagethresholdscaleswiththeinverseofthisfraction,guidanceofveryhighpulseenergiesandpeakpowerlev-elsbecomesfeasible.Furthermore,Kagome-typePCFshaveadvantagesintermsofdispersionmanagementandanultra-broadguidingbandwidth,whichareparticularlyimportantforapplicationswithultrashortlaserpulses[16].Ascanningelectronmicroscope(SEM)imageofourKagome-typePCFcanbeseeninFig.1.Thefiberwasdesignedforoperationatacentralwavelengthof800nmandhasaneffectivecorediameterof15μm.
Inourexperimentalsetup(Fig.2),weusetwovacuumchamberswhichareconnectedbya15-mmlongHC-PCF.ThedrivinglaserisastandardTi:sapphireamplifiersystemgenerating30-fspulsesat800nmwitharepetitionrateof1kHz.TheentrancefaceoftheHC-PCFissituatedinthepre-chamberfilledwithxenonatavariablepressureofupto30mbar.Theexitfaceofthefiberextendedintotheadjacentspectrometervacuumchamberwhichissealedofffromthepre-chamberexceptforthegasflowthroughtheHC-PCFandsomeparasiticleakagethroughthefibermount.Thevacuumchambercontainsatunablegratingandanelectronmultipliertube(EMT)detector.Thisiridium-coatedgratinghas1200lines/mm,resultinginaspectralresolutionofap-proximately4nmforourgeometry.TheEMTissensitiveinthespectralregionfrom30nmto150nmwithanestimatedpeakefficiencyof16%atawavelengtharound70nm.
O.H.Heckletal.
Fig.1SEMimageoftheKagome-typeHC-PCF.Theeffectivemodediameter(correspondingtothehollowcentercore)isabout15μm
Fig.2Experimentalsetup:Thelaserpulsesarefocusedontotheen-trancefaceofthehollowcorephotoniccrystalfiber(HC-PCF)infreespace.Thefiberismountedinthemiddleofthereddisc,whichislo-catedinachamberbackfilledwithanadjustablexenonpressure.Thexenoninletisdisplayedinyellow.Thefiberexitfaceisinavacuumchamberwhichcontainsthespectrometergrating(framedinblue)andthedetector(green)
Asafirststep,weinvestigatedthetransmissionproper-tiesanddamagethresholdofourKagomeHC-PCFinvac-uum(noxenonfillinginthepre-chamber).Kagome-typefiberstypicallyoperateathighcouplingefficienciesandwithtransmissionlossesof≈0.5dB/m[16].However,inourexperiment,theinputbeamwasellipticalandnotwellmode-matchedtotheroundfibermode,whichresultedinacouplingefficiencyofonly30%to40%.Forapulse-energyof30μJincidentonthefiber,wetransmitted10.5μJpulses.Thespectrumattheoutputwasidenticaltotheinputspec-
Highharmonicgenerationinagas-filledhollow-corephotoniccrystalfiber371Fig.3MeasuredspectrumofthehighharmonicsgeneratedinXewith4.2μJ,30fslaserpulsesofaTi:sapphire.ThegraphiscorrectedforspectralresponseoftheEMT
trum,showingthatthelowfieldoverlapofthecoremodewiththesilicadidnotintroducesignificantselfphasemod-ulation.Thedurationoftheoutputwasnotmeasured,butisexpectedtobethesameastheinputpulsedurationduetothelowdispersionofthefiber.Wedidnotobserveanydamageforthesepulseenergiesdespitepeakintensitiesof3×1014W/cm2andthelargeamountofun-launchedpower.Whenwefloodedthepre-chamberwithxenongas,weobservedthegenerationofhighharmonics.Figure3showsthemeasuredspectrumforpulseswith4.2μJenergyintheHC-PCFandaxenonpressureofP0=27mbarinthepre-chamber.Wedidnotincreasethepressureabove30mbarbecausetheparasiticleakagethroughthefibermountde-gradedthevacuuminthemainchambertotheEMToper-ationlimit(<1.3×10−4mbar).The7thto13thharmoniccanbeclearlyidentified.The3rdand5thharmonicorderscannotbeobservedsincethedetectorisinsensitivetowave-lengthsabove140nm.Weobtainaconversionefficiencyofη≈2×10−9(whichisdefinedasη=harmonicen-ergy/launchedlaserenergy),byintegratingoverthehar-monicorders7–13andtakingintoaccountthegratingef-ficiency(calculatedwiththeprogramREFLEC[24]).Fig-ure4showsthesignalintensityofthe7thharmonicversusthelaunchedpulseenergyELonmonicsignalscalesasEp
alogarithmicplot.Thehar-Lwherep=3.6.Thisisaweakerdependencethanexpectedfromlowestorderperturbationtheory(p∼7)indicatingthattheatomicresponsecannotbeaccuratelydescribedwithintheweak-fieldlimitforourconditions[25].WeobservedaHHGdetectionthresholdaslowas200nJinsidetheHC-PCF.Thetransversebeampro-fileoftheharmonicswasmeasuredbygraduallyinsertingaknifeedgeintothehighharmonicbeam(locatedinvac-uumchamberbetweenfiberoutputandgrating,seeFig.2).InFig.5,weshowthemeasurementofthebeamprofilefor
Fig.4Measuredsignalintensityforthe7thharmonicasafunctionofthelaserpulseenergyincidentonthefiber.Theerrorbarsdisplaythestandarderrorofthemeasurement.The7thHHGdetectionthresholdwasmeasuredtobe200nJinsidetheHC-PCF
Fig.5Aknifeedgemeasurementofthe7thharmonic70mmfromthefiberendrevealsanexcellentGaussianbeamprofilewhichcanbewellapproximatedbyaGaussianfit
the7thharmonicforalaunchedpulse-energyof4μJandaxenonpressureof30mbar.ThebeamprofilecanbewellapproximatedbyaGaussianfit.
OurresultsshowthatHHGinaHC-PCFisadvanta-geousintermsofthreshold,lightextractionandbeamqual-ity.Extractingtheharmonicradiationinenhancementcavi-tiesissubstantiallymorechallenging[7,8]becausethein-teractionofthelaserpulseswiththegastargetoccursin-sideahigh-finessecavityforwhichthelossesusuallyarekeptwellbelow1%.IncontrasttoHHGbasedonresonantfieldenhancementinnanostructuredtargets[9],thereisnobeamprofiledistortionimprintedontotheharmonicradia-
372tion,insteadaroundbeamwithGaussiantransverseprofileisachieved(Fig.5).
ThecurrentconversionefficiencyissimilartoHHGbasedonnanostructuredtargets,butsubstantiallylowerthanforrecenthighpowerenhancementcavitysystems[26].Thisisduetotheimperfectphasematchingbetweenfun-damentalandharmonicradiationinthesefirstproof-of-principleexperiments.HHGquasi-phasematchingtech-niquesarealreadyestablishedforinteractionsincapillaries[21]andfreespace[27],forwhichtheyincreasedtheeffi-ciencybymorethan2ordersofmagnitude.HC-PCFsallowustoaddressalargerparameterspaceforphasematching,duethesubstantialdesignflexibilityoftheirdispersionandmodearea.Thisisinstarkcontrasttostandardcapillariesforwhichthedispersionandhencephasematchingcondi-tionsaredirectlyconstrainedbythemodearea.Forexam-ple,theabilitytotailortherefractiveindexofthefiberatthefundamentalwavelengthmayallowforadjustmentofphase-matchingpressurewithoutcompromisingthemodeareare-quiredforlowenergyHHG.Inconjunctionwiththemuchincreasedinteractionlengthaffordedbythehightransmis-sionoftheHC-PCF,efficientgenerationofhighharmonicsinregimesthatarenotlimitedbytheabsorptionlengthofthenonlinearmediummaybepossible.Additionally,onecanemployquasi-phasematchingtechniquesforHHGal-readydemonstratedincapillaries[21],forexample,bymod-ulatingthemodearea(e.g.,bythefiberdrawingmethodorheattreatmentwithaCO2laser[28]).Onemayalsoutilizecounter-propagatingbeams[14]asdiscussedinrecentsim-ulationsofHHGinaPCF[11],whichshowthatharmonicswithphotonenergiesofseveralhundredsofelectron-voltscanbeproducedbyfemtosecondpulseswithmicrojouleen-ergies.
Inconclusion,wehavedemonstratedthegenerationofhighharmonicsinagasfilledHC-PCFforthefirsttime.Thefibertransmittedlaserpulseswithpulseenergiesofmorethan10μJwithoutdamage,whichisseveraltimeshigherthanpreviouslyreportedforthepropagationoffemtosecondpulsesinaHC-PCF.Usingxenonasthenonlinearmedium,weobservedthegenerationofthe7thto13thharmonicofthefundamentalwavelengthofaTi:sapphirelasersystemoperatingaround800nm.Thiscorrespondstothegenera-tionoflightintheVUV/XUV-spectralregionfrom50nmto130nm.TheobservedHHGdetectionthresholdisbelow200nJ.Thisiswellwithinreachofnovelmulti-megahertzdiode-pumpedsolid-statelasersandfiberamplifiers,whichachievesubstantiallyhigherpowerlevelsandrepetitionratesthanthecurrentlydominantkilohertzTi:sapphiream-plifiersystems.Diode-pumpedSESAM-mode-lockedfem-tosecondthindisklaserscurrentlygeneratecloseto100Wdirectlyfromtheoscillatorwithoutanyfurtheramplifica-tion[4,29,30].Chirped-pulsefemtosecondfiberamplifiersystemsachieveupto325Waveragepower[5,6].There-sultinghighaveragepower,compactcoherentXUV/VUV
O.H.Heckletal.
sourcewillhaveahighimpactfornumerousapplicationsinfieldsasdiverseasmedicine,biology,chemistry,physicsandmaterialsscience.Evenatalowconversionefficiencyofonly10−8,anaverageHHGphotonfluxof>1μWwouldbeachieved,whichissufficientformanyapplica-tions.Betterconversionefficiencieswithimprovedphasematchingwillreducethepowerrequirementandcomplex-ityofthesystemfurther.Operatingatmulti-megahertzin-steadofkilohertzrepetitionratesincreasesthesignal-to-noiseratioandreducesthetimerequiredformanymeasure-ments,as,forexample,inXUVmetrology,highresolutionXUVimaging,andmicroscopy[31].Increasingtherepe-titionrateisespeciallyimportantinexperiments,forwhichthetotalnumberofsimultaneousionizationprocessesislim-itedbyspacechargeeffects(i.e.,electro-magneticforcesbe-tweenthegeneratedchargedparticleswithintheinteractionvolume).Importantexamplesaresurfacescienceandcon-densedmatterstudiesusingangle-resolvedphotoemissionspectroscopy(ARPES)[32].
AcknowledgementTheauthorswouldliketothankPhilipSt.J.RussellforfruitfulinitialdiscussionsonHHGinaHC-PCFandhelpingtosetupthecollaborationwithBathUniversity.
OpenAccessThisarticleisdistributedunderthetermsoftheCre-ativeCommonsAttributionNoncommercialLicensewhichpermitsanynoncommercialuse,distribution,andreproductioninanymedium,providedtheoriginalauthor(s)andsourcearecredited.
References
1.M.Ferray,A.L’Huillier,X.F.Li,L.A.Lompré,G.Mainfray,C.Manus,Multiple-harmonicconversionof1064nmradiationinraregases.J.Phys.B:At.Mol.Opt.Phys.21,L31(1988)
2.A.McPherson,G.Gibson,H.Jara,U.Johann,T.S.Luk,I.A.McIntyre,K.Boyer,C.K.Rhodes,Studiesofmultipho-tonproductionofvacuum-ultravioletradiationintheraregases.J.Opt.Soc.Am.B4,595(1987)
3.U.Keller,Recentdevelopmentsincompactultrafastlasers.Nature424,831(2003)
4.T.Südmeyer,S.V.Marchese,S.Hashimoto,C.R.E.Baer,G.Gin-gras,B.Witzel,U.Keller,Femtosecondlaseroscillatorsforhigh-fieldscience.Nat.Photonics2,599(2008)
5.F.Röser,J.Rothhard,B.Ortac,A.Liem,O.Schmidt,T.Schreiber,J.Limpert,A.Tünnermann,131W220fsfiberlasersystem.Opt.Lett.30,2754(2005)
6.T.Eidam,S.Hadrich,F.Roser,E.Seise,T.Gottschall,J.Roth-hardt,T.Schreiber,J.Limpert,A.Tunnermann,A325-W-average-powerfiberCPAsystemdeliveringsub-400fspulses.IEEEJ.Sel.Top.QuantumElectron.15,187(2009)
7.C.Gohle,T.Udem,M.Herrmann,J.Rauschenberger,R.Holzwarth,H.A.Schuessler,F.Krausz,T.W.Hänsch,Afrequencycombintheextremeultraviolet.Nature436,234(2005)
8.R.J.Jones,K.D.Moll,M.J.Thorpe,J.Ye,Phase-coherentfre-quencycombsinthevacuumultravioletviahigh-harmonicgen-erationinsideafemtosecondenhancementcavity.Phys.Rev.Lett.94,193201(2005)
Highharmonicgenerationinagas-filledhollow-corephotoniccrystalfiber373
9.S.Kim,J.H.Jin,Y.J.Kim,I.Y.Park,Y.Kim,S.W.Kim,High-harmonicgenerationbyresonantplasmonfieldenhancement.Na-ture453,757(2008)
10.A.Paul,R.A.Bartels,R.Tobey,H.Green,S.Weiman,I.P.Chris-tov,M.M.Murnane,H.C.Kapteyn,S.Backus,Quasi-phase-matchedgenerationofcoherentextreme-ultravioletlight.Nature421,51(2003)
11.H.Ren,A.Nazarkin,J.Nold,P.S.J.Russell,Quasi-phase-matched
highharmonicgenerationinhollowcorephotoniccrystalfibers.Opt.Express16,17052(2008)
12.E.E.Serebryannikov,D.vonderLinde,A.M.Zheltikov,Phase-matchingsolutionsforhigh-orderharmonicgenerationinhollow-corephotonic-crystalfibers.Phys.Rev.E(Stat.NonlinearSoftMatterPhys.)70,66611(2004)
13.E.E.Serebryannikov,D.vonderLinde,A.M.Zheltikov,Broad-banddynamicphasematchingofhigh-orderharmonicgenerationbyahigh-peak-powersolitonpumpfieldinagas-filledhollowphotonic-crystalfiber.Opt.Lett.33,977(2008)
14.X.Zhang,A.L.Lytle,T.Popmintchev,X.Zhou,H.C.Kapteyn,
M.M.Murnane,O.Cohen,Quasi-phase-matchingandquantum-pathcontrolofhigh-harmonicgenerationusingcounterpropagat-inglight.Nat.Phys.3,270(2007)
15.F.Benabid,J.C.Knight,G.Antonopoulos,P.S.J.Russell,Stim-ulatedRamanscatteringinhydrogen-filledhollow-corephotoniccrystalfiber.Science298,399(2002)
16.F.Couny,F.Benabid,P.J.Roberts,P.S.Light,M.G.Raymer,Gen-erationandphotonicguidanceofmulti-octaveoptical-frequencycombs.Science318,1118(2007)
17.C.J.Hensley,M.A.Foster,B.Shim,A.L.Gaeta,Extremelyhigh
couplingandtransmissionofhigh-powered-femtosecondpulsesinhollow-corephotonicband-gapfiber,inConferenceonLasersandElectro-Optics(CLEO)(IEEEPress,NewYork,2008),p.paperJFG1
18.P.S.J.Russell,Photonic-crystalfibers.J.LightwaveTechnol.24,
4729(2006)
19.I.Christov,H.Kapteyn,M.Murnane,Quasi-phasematchingof
high-harmonicsandattosecondpulsesinmodulatedwaveguides.Opt.Express7,362(2000)
20.D.M.Gaudiosi,B.Reagan,T.Popmintchev,M.Grisham,
M.Berrill,O.Cohen,B.C.Walker,M.M.Murnane,H.C.Kapteyn,J.J.Rocca,High-orderharmonicgenerationfromionsinacapil-larydischarge.Phys.Rev.Lett.96,4(2006)
21.E.A.Gibson,A.Paul,N.Wagner,R.Tobey,D.Gaudiosi,
S.Backus,I.P.Christov,A.Aquila,E.M.Gullikson,D.T.Attwood,M.M.Murnane,H.C.Kapteyn,CoherentsoftX-raygenerationinthewaterwindowwithquasi-phasematching.Science302,95(2003)
22.G.Humbert,J.Knight,G.Bouwmans,P.Russell,D.Williams,
P.Roberts,B.Mangan,Hollowcorephotoniccrystalfibersforbeamdelivery.Opt.Express12,1477(2004)
23.J.West,C.Smith,N.Borrelli,D.Allan,K.Koch,Surfacemodesin
air-corephotonicband-gapfibers.Opt.Express12,1485(2004)24.F.Schäfers,TheBESSYraytraceprogramRAY,inMod-ernDevelopmentsinX-RayandNeutronOptics(Springer,Berlin/Heidelberg,2008),pp.9–41
25.A.L’Huillier,P.Balcou,L.A.Lompre,Coherenceandresonance
effectsinhigh-orderharmonic-generation.Phys.Rev.Lett.68,166(1992)
26.D.C.Yost,T.R.Schibli,J.Ye,Efficientoutputcouplingofintra-cavityhigh-harmonicgeneration.Opt.Lett.33,1099(2008)
27.J.Seres,V.S.Yakovlev,E.Seres,C.Streli,P.Wobrauschek,
C.Spielmann,F.Krausz,Coherentsuperpositionoflaser-drivensoft-X-rayharmonicsfromsuccessivesources.Nat.Phys.3,878(2007)
28.T.E.Dimmick,G.Kakarantzas,T.A.Birks,P.S.J.Russell,Carbon
dioxidelaserfabricationoffused-fibercouplersandtapers.Appl.Opt.38,6845(1999)
29.J.Neuhaus,D.Bauer,J.Zhang,A.Killi,J.Kleinbauer,
M.Kumkar,S.Weiler,M.Guina,D.H.Sutter,T.Dekorsy,Sub-picosecondthin-disklaseroscillatorwithpulseenergiesofupto25.9microjoulesbyuseofanactivemultipassgeometry.Opt.Ex-press16,20530(2008)
30.F.Brunner,E.Innerhofer,S.V.Marchese,T.Südmeyer,
R.Paschotta,T.Usami,H.Ito,S.Kurimura,K.Kitamura,G.Ar-isholm,U.Keller,Powerfulred-green-bluelasersourcepumpedwithamode-lockedthindisklaser.Opt.Lett.29,1921(2004)31.W.Chao,B.D.Harteneck,J.A.Liddle,E.H.Anderson,
D.T.Attwood,Soft-X-raymicroscopyataspatialresolutionbetterthan15nm.Nature435,1210(2005)
32.J.D.Koralek,J.F.Douglas,N.C.Plumb,Z.Sun,A.V.Fedorov,
M.M.Murnane,H.C.Kapteyn,S.T.Cundiff,Y.Aiura,K.Oka,H.Eisaki,D.S.Dessau,Laserbasedangle-resolvedphotoemis-sion,thesuddenapproximation,andquasiparticle-likespectralpeaksinBi2Sr2CaCu2O8.Phys.Rev.Lett.96,017005(2006)
因篇幅问题不能全部显示,请点此查看更多更全内容