《平均数》教学设计
一、教学目标:
1、结合解决问题的过程,初步认识平均数,体会平均数的必要性。
2、能读懂简单的统计图表,并能根据统计图表解决一些简单的实际问题。
3、在具体的情境中培养学生合作交流的能力,并能根据情况进行合理推测。
二、教学重点:理解平均数的意义,学会计算简单数据的平均数。
三、教学难点:感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考,体会平均数的意义。
四、教学过程:
1、创设情境,体验产生平均数的必要性。
同学们平时喜欢打球吗?前些天,二(3)班有5名男生,4名女生进行了一场激烈的投篮比赛。说到比赛,你们最想知道什么?
我们一起来看看比赛情况。
出示两幅统计图:这是男生队和女生队每个人在相同时间内投中球情况统计图。(0表示投中一个)
A、观察统计图,根据比赛情况,你认为哪队的投球水平高一些?说说你的想法。
学生讨论比总数——每队总人数不相同,不公平
比最多的——个人水平,不是整队水平
B、到底怎样比才公平地体现两队的实力(投球水平)呢?
(平均每人投中多少个球)——实际就是每队队员投球的平均数
揭题板书——认识平均数
2、认识平均数
刚才同学们经过讨论,一致认为算出每队队员的投球平均数,能帮我们评判输赢。那怎样才能求出两队投球的平均数呢?
A、同桌合作完成
a、利用手中的作业纸,不用箭头在图上移一移,也可以动笔算一算,求出两队的平均数。b、再比一比,哪队赢了?
B、反馈:哪队赢了?你是用什么方法研究出来的?
a、移一移,学生板演,其他生观察:在移的过程中,什么变了,什么没变?
每人投球个数变了
每队的总个数不变
(每队内部的个数调整,不影响整个队的实力)
像这种在总个数不变的情况下,把个数多的移给个数少的,使每人投球个数相同的方法叫:移多补少
刚才同学们用移多补少的方法求出了男生队投球的平均数是5,女生队投球的平均数是6,从而认为女生队投球的实力比男生队强一些。
还有别的方法吗?
C、算一算,(7+3+5+9)/4=6(个) (4+7+5+4+5)/5=5(个)
(1)、算式中的数都表示什么意思?
(2)、比较平均数,谁赢了?
比较两种方法,你喜欢哪一种?为什么?
小结:当数字比较小又接近的时候我们用移多补少更简便,
当数字比较大而复杂的时候我们用计算的方法更为简单。
3、理解平均数的意义
刚才在评判了两队的输赢碰到困难时,是谁帮助我们进行公正地评判的?那平均数到底是个怎样的数呢?想不想更进一步地了解它呢?
(1)、仔细观察女生队每人的.投球数,和平均数相比,你发现了什么?
有的比5大――可能相等或不相等
有的比5小――
(2)、同样都是“5”,它们所表示的意义相同吗?
是个体的投球水平
是整个队的总体投球水
4、其实,我们身边也有许多平均数,你能举个例子吗?
五、在具体情境中理解、应用平均数
1、是的,正是由于平均数能体现整体状况,在生活中的作用还不少呢。前不久,学校想了解三年级同学的身高状况,该怎么办?
昨天、我从咱们班第一横排中选5个同学,了解了他们的身高,一起来看看吧。
(1)、出示身高计表
同学12345
身高cm
(2)、估计:他们的平均身高大约是多少?你是怎么估算的?
145cm、130cm可以吗?最小数
生:我的建议也是比较他们的总数?
生:我有不同意见,人数不同比总数不公平。
师:你很会观察统计表,而且说得很有道理,你们看人数不同比总数不公平。
师:那怎么比才公平呢?
生:减少1个人
生:我认为不好,他们班每3人一组,剩下1个人,这个人不管放在哪个组,都会有一个组是四个人的。我们不能忽视别人的劳动成果。
师:说得多好!你不但会分析问题而且很会做人!
师:人数不同,我们怎么比才公平呢?以四人小组讨论,看看哪一组能想出好办法。
【设计意图】:利用这班分组后多一人的人数冲突,产生人数不同如何比的问题,提升探究问题的`兴趣。
(学生小组活动,教师巡视,学生汇报)
生:我们讨论的结果是“平均分”,也就是求C组平均每个人捡得多少个和D组平均每个人捡得多少个。
师:那我们怎样平均分呢?
学生诉说小结:也就是使每组中的每个人捡得同样多。
学生用学具摆一摆也可以在纸上画一画,算一算来探究同样多的方法。
(学生用学具探究方法)
师:谁能把自己的想法和大家分享一下?(师结合学生的汇报,利用课件呈现移多补少的过程,)
师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。【板书】
师:谁来汇报 D组的呢。
师:你是用什么方法找出D组同样多的?
(生讲师再次呈现移多补少过程)
探讨不同的方法引出列式计算。
板书:C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
学生指着板书说说先合后分的方法。
师:你为什么C组除以3, D组除以4呢?
生:因为C组有3人而D组有4人。
归纳得出:总数量÷总份数
谈话:你给我们带来了求平均数的计算方法,同学们都给你掌声了呢,谢谢你!小结:无论是移多补少,还是先合后分,目的只有一个,就是把原来几个不同的数变得一样多。数学上我们把同样多的这个数叫做原来这几个数的平均数。(板书课题:平均数)
完善板书:总数量÷总份数=平均数
【设计意图】:由统计图显示出人数相同,收集个数不同;人数不相同,收集个数不相同两种情况,这样出现更为自然、合理、减缓了求平均数的坡度,强化了学生对平均数的意义和理解,体验到了实际问题的感受。问题的设计为学生的探究活动提供了导引,学生不仅学会了平均数的知识,更重要的是掌握了一种分析和解决问题的方法和策略,培养一种质疑反思的意识和习惯。
二、深入理解平均数的定义(意义)
师:C组的总数量是多少?总份数呢?平均数是?
师指着板书学生汇报,明确6是6、9、3这三个数的平均数,5是2、6、8、4这四个数的平均数。
仔细观察两条平均数的虚线,超于虚线的瓶子和不到虚线的瓶子,你发现了什么? (同桌交流)
生:超出平均数的部分和不到平均数的部分相同。
生:平均数比这里最大的数小一些,比最小的数大一些。
生:平均数是在这组数据的最大数和最小数之间。
师:还有发现吗?
生:C组的数据还有和平均数恰好一样的。
师:C组捡的平均数是6,这个6是谁捡得的个数?是洋洋捡得的个数吗?是花花捡的个数吗?还是晶晶捡的个数?
生:都不是。这6是C组平均每人捡得的个数,是3个数的平均数。
师:你分析得很有道理。
师:我们比较这两组的平均数,哪个组获星了?
生:A组获星了,
师:同学们,课下我们也可以加入他们班的活动,为了美丽广西实行“弯腰行动”吧
【设计意图】:要提升学生发现问题、分析问题、解决问题的能力,教师的问题设计很重要,在此,我组织学生从对统计图红色虚线观察比较,直观地看出超出平均数的部分和不到平均数的部分相同,进而加深理解移多补少来求平均数,感悟平均数的特点。
三、用一用,怎样理解生活中的平均数。
师:我们在分析刚才这些活动结果的时候用到了平均数,在日常的学习和生活中,大家还在哪里见到过平均数呢?(学生自由交流)
师:同学们都谈论得非常热烈,有平均成绩,平均速度,平均水深,平均年龄……
师:老师也带来一些素材:(课件出示)
小结:从这两个国家男女的平均身高可以看出哪个国家的人身高一些,因为平均数能代表一组数据的总体水平。下节课我们再进一步来研究这方面的知识。
过渡:平均数在我们的生活中有着广泛的应用,接下来我们就分析下面几个有关生活中的平均数吧!
【设计意图】:感受生活中平均数的意义,激发学生解决问题的兴趣。
(一)平均成绩
下表记录了三(2)班同学在大课间进行一分钟垫球比赛冠亚军成绩表,请你算一算谁是冠军
(学生独立填写表格,有的很快就算出了结果,有的还在笔算)
师:你为什么算得这么快?能把你的小窍门告诉大家吗?
生:我利用移多补少的方法从小明第二次移1给第三次,就得平均数99。
师: 你真是个机灵的孩子,我们用“移多补少”的方法看小亮的,是多少?(93)。
用列式计算的同学说说做这道题的体会从而总结出:数量少的容易看出平均数的就用“移多补少”的方法。数量比较多不容易看出的,再用先合后分的方法。
【设计意图】:此环节的练习帮助学生巩固本节课的知识,从中发现优化平均数的方法,提高思维敏捷性。
(二)歌咏比赛平均分
出示
要求算出1号选手的实得分
师:打分最高的是多少分?最低分呢?不计算,你能估计一下1号选手平均得分在什么范围之内吗?猜猜1号选手平均得分是多少?
学生的答案在82到97之间
猜完列式验证自己的答案。
(出示评分规则:去掉一个最高分和一个最低分来确定最后实得分。学生再算最后得分)
小结:平均数在具体的应用过程中还要根据具体的游戏规则,联系实际去思考来发挥它的作用的。我们学到众数,中位数时会进一步比较。
【设计意图】:此环节的练习让学生体会到平均数在实际应用过程中受到最大数和最小数的影响,为了公平起见,还要根据具体的游戏规则来算。从中也为日后学众数和中位数埋下伏笔。
(三)平均水深
老师这里有一道有趣的问题
一条河平均水深是100厘米,小明身高是140厘米,他想:在这条河里学游泳不会有危险。你同意他的观点吗?
生:小河平均水深是100厘米,如果深的地方超过140厘米,小明到河里游泳就会有危险。
(课件出示河的截面图)如果要在河边立一块警示牌,你会怎么写才能让人一眼看出危险性呢?(出示:最深处约250厘米)
出示最近溺水事故案例,希望同学们不要到河里去游泳,注意人生安全!
【设计意图】:平均水深这道题,用学生日常生活常识,知道一般河流水下深浅不一,利用出示截面图和建立警示牌起到警示作用,进而渗透安全教育。用典型的问题将学生的思维引向深处,在解决问题的过程中收获一种思维方式。
四、总结评价,感受成功。
提问:通过这节课的学习,你有哪些收获呢?
从学生回答小结出:平均数介于最大数和最小数之间,还学会了灵活应用两种求平均数的方法。
布置作业:利用今天所学的知识来解决课本P44练习十一的第1、第2题。
课堂赠语:只要同学们善于观察生活,就会发现生活中处处都有数学存在。
五、板书设计
平均数
①移多补少
②先合后分 总数量÷总份数=平均数
C组 :(6+9+3)÷3 D组:(2+6+8+4)÷4
=18÷3 =20÷4
=6(个) =5(个)
因篇幅问题不能全部显示,请点此查看更多更全内容