您好,欢迎来到华佗健康网。
搜索
您的当前位置:首页《百分数的应用》第2时:“求一个数比另一个多百分之几”练习课

《百分数的应用》第2时:“求一个数比另一个多百分之几”练习课

来源:华佗健康网

  六下第一单元《百分数的应用》教学反思

  本单元教学是在六年级上学期学习了认识百分数这一单元的基础上开展的,共分为四个部分,分别是纳税、利息、折扣以及稍复杂的百分数应用题。根据自己对教材的理解和把握以及教学的情况来看,我觉得在本单元的教学要注重“三抓”。

  一、抓联系

  因为本单元的例1是求一个量比另一个量多(少)百分之几的实际问题,而在六上已经学习了有关这种类型的几分之几的实际问题,故教师在教学中要紧抓这两者之间的联系,从而让学生明确,解决这类的问题解题思路是一致的,只是结果的呈现形式不一样。例2和例5及例6的教学基本思路和六上分数应用题的基本思路也是一致的,教师主要是注重引导学生说出思考问题的步骤及思路。

  二、抓对比和变式

  教学中,教师在练习训练中,不能仅仅依靠书中提供的练习,还要加强习题之间的对比,在对比练习中,才能让学生进一步区分不同类型题目的解题思路和方法。教师可以安排两种类型的对比练习,第一种是基本条件一样,数的形式不一样的题组练习,主要是明确虽然数的形式不一致,但解题思路是一样的。第二种是基本条件一样,关键句中单位“1”是已知和未知的题组练习,主要是明确当单位“1”的量在已知与未知的变化过程中,解题方法是怎样的。

  教材中,给出的练习往往都是基本的练习,基本上两步就能求出所求的问题,教师在练习中,还要增加一些变式的练习,可以是三至四步以上的,可以结合教材中现有的题目,把所求的问题进行变化,从而让学生明白具体的解题思路。

  三、抓重点习题

  第一次教六年级的老师往往在教学第6页第4题时会感到很困难,甚至有的时候连老师也对这一题不是很理解,因此在教学中,教师要充分理解学生的困难,首先应该是教师举例在黑板上分析这道题的解题思路,学生学习的困难有两点,第一是学生不知道这道题要分开来计算税款,第二是学生不理解超过500元——2000元的部分为什么是1500元。教师介于学生这两方面的困难,在第二点上要教细,教师可以结合条形的统计图来帮助学生理解,从0元开始往上分段,从分段过程中明确各段的钱数与税率之间的关系。在教学结束后,教师可以举几个实例让学生计算,学生练习中教师要及时把握学生在计算中的困难,然后结合困难,在班级中有针对性地进行讲解,讲解后让学生再练习,反复几次,学生对此题的理解会更加到位,做题也会更加熟练。

  六下第一单元《百分数的应用》教后反思

  六下第一单元《百分数的应用》内容已经教完,虽然在课前已经对整个单元的教材分析、课后练习、学生可能起点都进行了较为系统的研究,但是在课堂教学中,总是有这样或那样的遗憾,也是在这样的反思后,对整个教学,才有了更加深刻系统的理解。

  一个沟通

  《百分数的应用》虽然作为的一个单元,但它与上学期的内容有非常密切的联系。在六年级(上册)“认识百分数”里,已经教学了百分数的意义,并联系后项是100的比,体验了百分数又叫做百分比或百分率;教学了百分数与分数、小数的互化,尤其是百分数与小数的相互改写,也为应用百分数解决实际问题做了必要的准备;还教学了简单的求一个数是另一个数的百分之几的问题,初步应用了百分数。同时,上学期还重点研究了分数问题,对分率句的分析,单位“1”的寻找,学生都已经具备了相当的能力,所以许多东西,我们都没有必要让学生从头去学,从新开始。如,在学习“较复杂的百分数问题”时,例题出示放下去让学生思考时,方法就是多种多样。由于80%,学生对此百分数非常敏感,分率句“女生人数是男生的80%”,有的同学把它转化成“女生人数是男生的4/5”,变成已经学过的分数问题;有的同学把它转化成“女生与男生的人数之比是4:5”,变成学过的比的问题;而直接运用百分数的方法来解决的反而相对较少,更别说用数量关系式或线段图的方法来帮助自己理清关系了。收不到这样的资源,课堂如何继续?其实,想想这也是非常正常的。“80%”这个百分数转化成分数或比,非常简单,而转化后的问题,对学生来说没有困难,学生自然选择这样的方法,这也反映出平时我们在教学时对“转化”这种数学思想有所渗透,部分学生已经有将没有学过的内容转化成已经学过的知识解决问题的意识。其实,百分数问题的解题思路和分数问题完全是相同的,所以,只要做好其中的沟通,反而是帮助学生理解百分数问题。适时的,我又将80%这个数据换成了72%,学生对这个百分数的敏感度明显降低,那么将这样的百分数一步一步转化成最简分数计算反而麻烦,所以百分数问题也有其特殊性,每次都转化成分数或比来解决,并不是一般方法。

  两种方法

  两种方法是画线段图和列数量关系式。其实,这是两种非常有效实用的方法,可以帮助学生理清关系。但是,我始终认为,这只是帮助学生理解题意的方法,如果自己理解能力足够的话,在脑子中就能画出线段图和列出数量关系式,完全没有必要把它们写出来。它们的作用只是帮助学生在理解上存在问题时给与直观的提示。从学生的反应中也可以发现:许多学生是在读题后直接列出算式解答的,再去画线段图和数量关系式反而是多此一举,学生根本没有这样的需求。但万一碰到了不会解决的难题怎么办,会画线段图和会列数量关系式这种基本的能力怎样进行检测呢?我想了几个办法。

  1.说明理由

  会做也要会说。题目解决的过程,怎样跟同桌交流,怎样说得简洁明了?线段图和数量关系就是很好的理由。

  2.改正错题

  为什么会错?就是因为关系没有搞清楚。怎样最清楚?把线段图画出来,数量关系式写出来,改正错题的时候一起拿上来。

  3.看图说意

  考的就是你看得懂图吗?数量关系明确吗?

  这样来操作,学生有了需求,两种方法也更有价值。

  三个类型

  1.三个一般

  《百分数的应用》中其实涉及了三种类型。在教学的过程中要帮助学生在不同中找相同,凸显题目本质特征,初步形成“类”意识。在整理与练习中,要帮助学生梳理各种类型,沟通联系。这也要求老师要有意识的学会整理,才能帮助学生形成知识网络。

  第一类:求一个数是另一个数的百分之几。(求百分数)

  b        a         c%        b÷a=c%

  第二类:求一个数的百分之几是多少。(单位“1”已知)

  a        c%         b          ac%=b

  第三类:已知一个数的百分之几是多少,求这个数。(单位“1”未知)

  c%        b       a       b÷c%=a  或者用方程

  从这三类中,学生能较为明显地发现三种类型之间的联系,了解只要知道其中的两个量,就能求出第三个量。字母式子虽不是教材要求,但是直观明了,且对将来学生学习《代数》,做好前期的渗透。同时,也能从判断题目类型出发,来选择哪种解决的方法。所以,整理与练习中的解决问题,我都要求学生先对题目进行类别判断,然后在来解决,有效地降低了错误率。

  2.三个特殊

  本单元还涉及了三个日常生活中常见的百分数问题:纳税、利息、打折。许多学生遇到这样的问题,总是脱离开平时的思考方式。其实,这3个问题,只是上面三种类型的具体化,a、b、c%有了专有名词而已(如打折问题中的原价、折扣、现价等),老师又必要在整理时,帮助学生理清实质,进行“归一”。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务