一、选择题
1. 设0<a<1,实数x,y满足
,则y关于x的函数的图象形状大致是( )
A. B. C. D.
2. 下列函数中,既是奇函数又是减函数的为( ) A.y=x+1
B.y=﹣x2
C.
D.y=﹣x|x|
3. 已知数列an是各项为正数的等比数列,点M(2,log2a2)、N(5,log2a5)都在直线yx1上,则数列
an的前n项和为( )
A.22 B.2殖成( ) A.512个
B.256个
nn12 C.2n1 D.2n11
C.128个
D.个
4. 某种细菌在培养过程中,每20分钟一次(一个为两个).经过2个小时,这种细菌由1个可繁
5. 直线: (为参数)与圆:(为参数)的位置关系是( )
A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心
6. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )
A.20种 B.22种 C.24种 D.36种
7. 已知函数f(x)满足f(x)=f(π﹣x),且当x∈(﹣A.
D.
B.
,
x
)时,f(x)=e+sinx,则( )
C.
第 1 页,共 18 页
8. 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )
A.(1,1) B.(0,3) C.(,2) D.(,0)
29. fx2axa 在区间0,1上恒正,则的取值范围为( )
A.a0 B.0a10.双曲线A.
2 C.0a2 D.以上都不对
的渐近线方程是( ) B.
C.
D.
11.已知随机变量X服从正态分布N(2,σ2),P(0<X<4)=0.8,则P(X>4)的值等于( ) A.0.1 B.0.2 C.0.4 D.0.6
12.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于( ) A.7
B.9
C.11
D.13
二、填空题
13.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为 .
14.如果椭圆
+
=1弦被点A(1,1)平分,那么这条弦所在的直线方程是 .
15.某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答) 16.已知双曲线的标准方程为为 .
,则该双曲线的焦点坐标为, 渐近线方程
第 2 页,共 18 页
17.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则
18.已知数列{an}中,a1=1,an+1=an+2n,则数列的通项an= .
= .
的直线与抛物线C
三、解答题
19.(本小题满分14分)
设函数f(x)ax2bx1cosx,x0,(其中a,bR).
21,求f(x)的单调区间; 2(2)若b0,讨论函数f(x)在0,上零点的个数.
2(1)若a0,b【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
20.如图,四棱锥PABC中,PAABCD,AD//BC,ABADAC3,PABC4,M 为线段AD上一点,AM2MD,N为PC的中点.
(1)证明:MN//平面PAB;
(2)求直线AN与平面PMN所成角的正弦值;
第 3 页,共 18 页
21.已知和均为给定的大于1的自然数,设集合
,,,...,.
,其中
、
,集合
..。
(1)当(2)设、.证明:若
,..。.
,,
,,...,;
..。
,,
时,用列举法表示集合
,,,...,
,则
22.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=(1)求证:CM⊥EM;
(2)求MC与平面EAC所成的角.
,M是AB的中点.
第 4 页,共 18 页
23.已知矩阵A=
24.已知函数f(x)=ax2﹣2lnx.
(Ⅰ)若f(x)在x=e处取得极值,求a的值; (Ⅱ)若x∈(0,e],求f(x)的单调区间; (Ⅲ) 设a>
,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.
,向量=
.求向量
,使得A2=.
第 5 页,共 18 页
郊区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参)
一、选择题
1. 【答案】A
,即y=
,故函数y为偶函数,它的图象关于y
【解析】解:0<a<1,实数x,y满足轴对称, 故选:A.
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
2. 【答案】D
【解析】解:y=x+1不是奇函数; y=﹣x2不是奇函数;
是奇函数,但不是减函数; y=﹣x|x|既是奇函数又是减函数, 故选:D.
【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.
3. 【答案】C
【解析】解析:本题考查等比数列的通项公式与前n项和公式.log2a21,log2a54,∴a22,a516,∴a11,q2,数列an的前n项和为21,选C.
n4. 【答案】D =6次,
【解析】解:经过2个小时,总共了故选:D.
6
则经过2小时,这种细菌能由1个繁殖到2=个.
【点评】本题考查数列的应用,考查了等比数列的通项公式,是基础的计算题.
5. 【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化 【试题解析】将参数方程化普通方程为:直线:
圆心(2,1),半径2. 圆心到直线的距离为:
又圆心不在直线上,所以直线不过圆心。
圆
:
,所以直线与圆相交。
第 6 页,共 18 页
故答案为:D 6. 【答案】C
【解析】解:根据题意,分2种情况讨论:
①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学, 共有共有
=12种推荐方法; =12种推荐方法;
②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选, 故共有12+12=24种推荐方法; 故选:C.
7. 【答案】D
【解析】解:由f(x)=f(π﹣x)知, ∴f(
)=f(π﹣
,<
)=f(
),
∵当x∈(﹣∵∴f(∴f(
<
<)<f(
x
)时,f(x)=e+sinx为增函数
, )<f()<f(
), ),
)<f(
故选:D
8. 【答案】 D
【解析】解:由题意作出其平面区域,
将u=2x+y化为y=﹣2x+u,u相当于直线y=﹣2x+u的纵截距, 故由图象可知,
使u=2x+y取得最大值的点在直线y=3﹣2x上且在阴影区域内, 故(1,1),(0,3),(而点(故选D.
,2)成立,
,0)在直线y=3﹣2x上但不在阴影区域内,
故不成立;
第 7 页,共 18 页
【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.
9. 【答案】C 【解析】
2试题分析:由题意得,根据一次函数的单调性可知,函数fx2axa在区间0,1上恒正,则
a0f(0)0,即,解得0a2,故选C. 2f(1)02aa0考点:函数的单调性的应用.
第 8 页,共 18 页
10.【答案】B
【解析】解:∵双曲线标准方程为其渐近线方程是整理得y=±x. 故选:B.
=0,
,
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
11.【答案】A
2
【解析】解:∵随机变量ξ服从正态分布N(2,o), ∴正态曲线的对称轴是x=2 P(0<X<4)=0.8,
∴P(X>4)=(1﹣0.8)=0.1, 故选A.
12.【答案】A
1
【解析】解:∵x+x﹣=3,
22122
则x+x﹣=(x+x﹣)﹣2=3﹣2=7.
故选:A.
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】V
【解析】
【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C, 所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:故答案为:
14.【答案】 x+4y﹣5=0 .
第 9 页,共 18 页
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
22
把P(x1,y1),Q(x2,y2)代入x+4y=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0, ∴k=
=﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1), 即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0. 故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
15.【答案】 24
【解析】解:由题意,B与C必须相邻,利用捆绑法,可得故答案为:24.
【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础.
16.【答案】 (± ,0) y=±2x . 【解析】解:双曲线c=
=2
,
,0),
的a=2,b=4,
=48种方法,
因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有48÷2=24种,
可得焦点的坐标为(±
渐近线方程为y=±x,即为y=±2x. 故答案为:(±
,0),y=±2x.
【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.
第 10 页,共 18 页
17.【答案】 .
2
【解析】解:∵O为坐标原点,抛物线C:y=2px(p>0)的准线为l,焦点为F, 过F斜率为
的直线与抛物线C相交于A,B两点,
直线AO与l相交于D, ∴直线AB的方程为y=联立
(x﹣),l的方程为x=﹣, ,解得A(﹣
,
,
P),B(,﹣
)
∴直线OA的方程为:y=
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴ ==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.
18.【答案】 2n﹣1 .
n
【解析】解:∵a1=1,an+1=an+2, ∴a2﹣a1=2, a3﹣a2=22,
第 11 页,共 18 页
…
an﹣an﹣1=2n﹣1,
23n1
相加得:an﹣a1=2+2+2+2…+2﹣,
an=2n﹣1,
n
故答案为:2﹣1,
三、解答题
19.【答案】
【解析】(1)∵a0,b∴f(x)1, 211x1cosx,f(x)sinx,x0,. (2分) 222令f(x)0,得x.
6当0x时,f(x)0,当x时,f(x)0,
662所以f(x)的单调增区间是,,单调减区间是0,. (5分)
626第 12 页,共 18 页
若
110,a,10,则f()a又f()f(由零点存在定理,00,,使f(00))0,222所以f(x)在(0,0)上单调增,在0,上单调减.
22a1. 又f(0)0,f()24214a10,此时f(x)在0,上有两个零点; 故当a2时,f()2242241a10,此时f(x)在0,上只有一个零点. 当2a时,f()242第 13 页,共 18 页
20.【答案】(1)证明见解析;(2)【解析】
85. 25试
题解析:
第 14 页,共 18 页
(2)在三角形AMC中,由AM2,AC3,cosMAC2,得 3
CM2AC2AM22ACANcosMAC5, AM2MC2AC2,则AMMC, ∵PA底面ABCD,PA平面PAD,
∴平面ABCD平面PAD,且平面ABCD平面PADAD,
∴CM平面PAD,则平面PNM平面PAD,
在平面PAD内,过A作AFPM,交PM于F,连结NF,则ANF为直线AN与平面PMN所成角。 在RtPAM中,由PAAMPMAF,得AF所以直线AN与平面PMN所成角的正弦值为4585,∴sinANF, 52585.1 25
第 15 页,共 18 页
考点:立体几何证明垂直与平行. 21.【答案】
【解析】22.【答案】
【解析】(1)证明:∵AC=BC=∴△ABC为等腰直角三角形, ∵M为AB的中点, ∴AM=BM=CM,CM⊥AB, ∵EA⊥平面ABC, ∴EA⊥AC,
设AM=BM=CM=1,则有AC=
,AE=AC=
, ==
, ,
AB,
在Rt△AEC中,根据勾股定理得:EC=在Rt△AEM中,根据勾股定理得:EM=
222
∴EM+MC=EC,
∴CM⊥EM;
(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角, 则MC与平面EAC所成的角为45°.
第 16 页,共 18 页
23.【答案】=【解析】A2=设
=
.由A2=,得
.
,从而
解得x=-1,y=2,所以=24.【答案】
【解析】解:(Ⅰ) f′(x)=2ax﹣=经检验,a=(Ⅱ)
符合题意.
由已知f′(e)=2ae﹣=0,解得a=.
1)当a≤0时,f′(x)<0,∴f(x)在(0,e]上是减函数. 2)当a>0时,①若②若
<e,即≥e,即0<a≤
,则f(x)在(0,
)上是减函数,在(
,e]上是增函数;
,则f(x)在[0,e]上是减函数.
综上所述,当a≤时,f(x)的减区间是(0,e],
第 17 页,共 18 页
当a>(Ⅲ)当
时,f(x)的减区间是,增区间是. )=1+lna;
时,由(Ⅱ)知f(x)的最小值是f(
易知g(x)在(0,e]上的最大值是g(e)=﹣4﹣lna; 注意到(1+lna)﹣(﹣4﹣lna)=5+2lna>0, 故由题设知,
解得
<a<e2
.
故a的取值范围是(,e2)
第 18 页,共 18 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务