您的当前位置:首页正文

分数百分数应用题典型解法的 和复习

来源:华佗健康网
1一桶油第一次用去,第二次比第一次多用去20千克,还剩下22千克。原来这桶油有多少千

5克?

[分析与解]

11从图中可以清楚地看出:这桶油的千克数×(1--)=20+22

5511则这桶油的千克数为:(20+22)÷(1--)=70(千克)

55一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?

[分析与解]

显然,这堆煤的千克数×(1-20%-50%)=290+10

则这堆煤的千克数为:(290+10)÷(1-20%-50%)=1000(千克)

量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。(量率对应常常和画线段图结合使用,效果极佳。)

练习题

※一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还少10千克,求原来这堆煤共有多少千克? 缝纫机厂女职工占全厂职工人数的

7,比男职工少144人,缝纫机厂共有职工多少人? 20解题的关键是找到与具体数量144人的相对应的分率。

7713,男职工占1-=,女职工比男职工少占全厂职20202013733工人数的-=,也就是144人与全厂人数的相对应。全厂的人数为:

2020101077 144÷(1--)=480(人)

202012菜农张大伯卖一批大白菜,第一天卖出这批大白菜的,第二天卖出余下的,这时还剩下240

35 从线段图上可以清楚地看出女职工占

千克大白菜未卖,这批大白菜共有多少千克?

[分析与解]

12 从线段图上可以清楚地看出240千克的对应分率是第一天卖出后余下的(1-)。则第一天

35卖出后余下的大白菜千克数为: 240÷(1-

2)=400(千克) 51 同理400千克的对应分率为这批大白菜的(1-),则这批大白菜的千克数为:

31 400÷(1-)=600(千克)

3 转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。

1、从分数的意义出发,把分数变成份数进行“率”的转化 男生人数是女生人数的[分析与解] 男生人数是女生的

4,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生54,男生人数是学生总人数的几分之几? 5总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几?就是求4份是(4+5)份的几分之几?

4÷(4+5)=

4 942,若弟给兄4元,则弟的钱数是兄的,求兄53兄弟两人各有人民币若干元,其中弟的钱数是兄的弟两人原来各有多少元?

[分析与解]

兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的

2,则两人的总钱数为: 2342 4÷(-)=90(元)

45234 弟原来的钱数为:90×=40(元)

454,后来45弟的钱数占两人总钱数的

兄原来的钱数为:90-40=50(元)

2、直接运用分率计算进行“率”的转化 甲是乙的

24,乙是丙的,甲是丙的的几分之几? 35[分析与解]

2442 甲是乙的,乙是丙的,求甲是丙的的几分之几?就是求的是多少?

3553428 ×=

53153某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的,下半月比上半

51月多生产了,这样全月实际生产了1980个零件,一月份计划生产多少个?

5[分析与解]

1131 是以上半月的产量为“1”,下半月比上半月多生产,即下半月生产了计划的×(1+)

555518318=。则计划的(+)为1980个,计划生产个数为: 25525331 1980÷[+×(1+)]=1500(个)

5553、通过恒等变形,进行“率”的转化

43 【例9】甲的等于乙的,甲是乙的几分之几?

57[分析与解]

43=乙× 574434 方法1:等式两边同除以得:甲×=乙×÷

557518 甲=乙×

2534 方法2:根据比例的基本性质得:甲∶乙=∶

75 由条件可得等式:甲×

化简得:甲∶乙=15:28 即甲是乙的

18。 25 【例10】五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?

[分析与解] 由条件可得等式:

男生人数×(1-75%)= 女生人数×(1-80%) 男生人数∶女生人数=4:5

就是男生人数是女生人数的 女生人数:54÷(1+

4。 54)=30(人) 5 男生人数:54-30=24(人)

分数(百分数)应用题中有许多数量前后发生变化的题型,一个数量的变化,往往引起另一个数量的变化,但总存在着不变量。解题时要善于抓住不变量为单位“1”,问题就会迎刃而解。

1、部分量不变

有两种糖放在一起,其中软糖占有多少块? [分析与解]

根据题意,硬糖块数、两种糖的总块数都发生变化,但软糖块数不变,可以确定软糖块数为单

91,再放入16块硬糖以后,软糖占两种糖总数的,求软糖2049911)÷=倍。加入16块硬糖以后,后来硬糖块20209111116数是软糖块数的(1-)÷=3倍,这样16块硬糖相当于软糖的3-=倍,从而求出软糖

4499位“1”,则原来硬糖块数是软糖块数的(1-

的块数。 16÷[(1-

1199)÷-(1-)÷]=9(块) 4420201小明看一本课外读物,读了几天后,已读的页数是剩下页数的,后来他又读了20页,这时已读

81的页数是剩下页数的,这本课外读物共有多少页?

6[分析与解]

根据题意,已读页数和未读页数都发生了变化,但这本书的总页数不变,可把总页数看作单位“1”,原来已读页数占总页数的占这本书总页数的(

11,又读了20页后,这时已读页数占总页数的,这20页181611-),则这本课外读物的页数为: 161811 20÷(-)=630(页)

1618 【例13】兄弟三人合买一台彩电,老大出的钱是其他两人出钱总数的

1人出钱总数的,老三比老二多出400元。问这台彩电多少钱?

31,老二出的钱是其他两2[分析与解]

111和的单位“1”都是其他两人出钱的总数,但含义是不同的,是以老二和老2321三出钱的总数为单位“1”, 是以老大和老三出钱的总数为单位“1”。但三人出钱的总数(彩电

31价格)是不变的,把它确定为单位“1”,老大出的钱数相当于彩电价格的,老二出的钱相当

121115于彩电价格的,老三出的钱数相当于彩电价格的1--=,400元相当于彩电价格

13121312511的-=。这台彩电的价格为: 12136111 400÷(1---)=2400(元)

121313 从字面上看

五、假设思想

假设思想是一种重要的数学思想,常用有推测性假设法和冲突式假设法。

1、推测性假设法

推测性假设法是通过假定,再按照题的条件进行推理,然后调整设定内容,从而得到正确答案。

3 【例14】一条公路修了1000米后,剩下部分比全长的少200米,这条公路全长多少米?

5[分析与解]

3 由题意知,假设少修200米,也就是修1000-200=800(米),那么剩下部分正好是全长的,

53因此已修的800米占全长的(1-),所以这条公路全长为:

53 (1000-200)÷(1-)=2000(米)

52、冲突式假设法

冲突式假设法是解应用题中常用的一种思维方法。通过对某种量的大胆假设,再依照已知条件进行推算,根据数量上出现的矛盾冲突,进行比较,作适当调整,从而找到正确答案的方法。 【例15】甲、乙两班共有96人,选出甲班人数的组,问甲、乙两班原来各有多少人?

[分析与解]

11 假设两班都选出,则选出96×=24(人),假设比实际多选出24-22=2(人)。

4411111 调整:这是因为把选出乙班人数的假设为选出,多算了-=,由此可先算出乙班原

54452011和乙班人数的,组成22人的数学兴趣小45来的人数。

111 (96×-22)÷(-)=40(人)

445 甲班原来的人数: 96-40=56(人)

【例16】某书店出售一种挂历,每售出1本可得18元利润。售出一部分后每本减价10元出售,全部售完。已知减价出售的挂历本数是减价前出售挂历本数的元。书店共售出这种挂历多少本?

[分析与解]

根据减价出售的挂历本数是减价前出售挂历本数的

2,我们假设减价前出售的挂历为3本,减32。书店售完这种挂历共获利润28703价出售的挂历为2本,则售出这2+3=5(本)挂历所获的利润为: 18×3+(18-10)×2=70(元)

这与实际共获利润2870元相矛盾,这是什么原因造成的呢?

调整:这是因为把出售的挂历假设为5本,根据实际共获利润是假设所获利润的2870÷70=41倍,实际共售出挂历的本数也应该是假设5本的41倍。即5×41=205(本)

六、用方程解应用题思想

在用算术方法解应用题时,数量关系比较复杂,特别是逆向思考的应用题,往往棘手,而这些的应用题用列方程解答则简单易行。列方程解应用题一开始就用字母表示未知量,使它与已知量处于同等地位,同时运算,组成等式,然后解答出未知数的值。列方程解应用题的关键是根据题中已知条件找出的等量关系,再根据等量关系列出方程。

【例17】某工厂第一车间人数比第二车间的

4多16人,如果从第二车间调40人到第一车间,5这时两个车间的人数正好相等,原来两个车间各有多少人? [分析与解]

根据题意,有如下数量关系:

第一车间人数+40人=第二车间人数-40人 解:设第二车间有X人。

4X+16+40=X-40 544X+16=×480+16=400(人) 55 解得: X=480 第一车间人数为:

因篇幅问题不能全部显示,请点此查看更多更全内容