前言
相关概念
求解双联不等式的的方法一,利用不等式的性质求解,给双连不等式的左、中、右同时减去\(1\),得到\(1<2x<2\),然后同时除以\(2\),得到\(\cfrac{1}{2}<x<1\);方法二,转化为不等式组求解,如\(\left\{\begin{array}{l}{2<2x+1}\\{2x+1<3.}\end{array}\right.\)
典例剖析
例1【整体思想】解不等式\(0<\cfrac{1+lga}{1-lga}<1\),
法1:原不等式等价于\(\left\{\begin{array}{l}{0<\cfrac{1+lga}{1-lga}①}\\{\cfrac{1+lga}{1-lga}<1②}\end{array}\right.\)
解①\(0<\cfrac{1+lga}{1-lga}\),由穿根法得到\(\cfrac{1+lga}{lga-1}<0\),故\(-1<lga<1\)③,
解②\(\cfrac{1+lga}{1-lga}<1\),变形得到\(\cfrac{2lga}{lga-1}>0\),由穿根法得到\(lga<0\)或\(lga>1\)④,
故由③④求交集得到\(-1<lga<0\),解得\(a\in (\cfrac{1}{10},1)\)。
法2:看到双连不等式的中间分式部分,若能联想到分式的常用变形,也可以这样求解;
由\(0<\cfrac{1+lga}{1-lga}<1\),得到\(0<\cfrac{lga-1+2}{1-lga}<1\),即\(0<-1+\cfrac{2}{1-lga}<1\),故\(1<\cfrac{2}{1-lga}<2\),且能得到\(1-lga>0\),
故利用倒数法则得到\(\cfrac{1}{2}<\cfrac{1-lga}{2}<1\),即\(1<1-lga<2\),即\(-2<lga-1<-1\),即\(-1<lga<0\),解得解得\(a\in (\cfrac{1}{10},1)\),故选\(C\).
例2解不等式\(x<\cfrac{1}{x}<x^2\);
分析:先转化为\(\left\{\begin{array}{l}{x<\cfrac{1}{x}①}\\{\cfrac{1}{x}<x^2②}\end{array}\right.\),再用穿根法分别求解,
解①\(\cfrac{x^2-1}{x}<0\)得到\(x<-1\)或\(0<x<1\);解②\(\cfrac{x^3-1}{x}>0\)得到\(x<0\)或\(x>1\),
①②求交集得到,解集为\((-\infty,-1)\).
例3【2018江苏南京金陵中学检测】已知当\(0\leqslant x\leqslant 2\)时,不等式\(-1\leqslant tx^2-2x\leqslant 1\)恒成立,则\(t\)的取值范围是____________。
分析:当\(x=0\)时,不等式恒成立,则\(t\in R\);
当\(x\neq 0\)时,得到\(\cfrac{2x-1}{x^2}\leqslant t \leqslant \cfrac{2x+1}{x^2}\)在\((0,2]\)上恒成立,
令\(f(x)=\cfrac{2x-1}{x^2}=-(\cfrac{1}{x}-1)^2+1\),最大值为\(1\),则有\(t\geqslant 1\);
令\(g(x)=\cfrac{2x+1}{x^2}=(\cfrac{1}{x}+1)^2-1\),最小值为\(\cfrac{5}{4}\),则有\(t\leqslant \cfrac{5}{4}\);
综上可知,\(t\)的取值范围为\([1,\cfrac{5}{4}]\);