<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>
</dependency>
spring:
redis:
host: 101.42.236.117
port: 6379
datasource:
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://127.0.0.1:3306/myhouse?useUnicode=true&characterEncoding=utf-8&useSSL=true&serverTimezone=GMT%2B8
username: root
password: root
package cn.kgc.util;
import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.cache.CacheManager;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.*;
import java.time.Duration;
@Configuration
public class MyRedisConfig {
@Bean(name = "redisTemplate")
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory){
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
参照StringRedisTemplate内部实现指定序列化器
redisTemplate.setConnectionFactory(redisConnectionFactory);
redisTemplate.setKeySerializer(keySerializer());
redisTemplate.setHashKeySerializer(keySerializer());
redisTemplate.setValueSerializer(valueSerializer());
redisTemplate.setHashValueSerializer(valueSerializer());
return redisTemplate;
}
private RedisSerializer<String> keySerializer(){
return new StringRedisSerializer();
}
//使用Jackson序列化器
private RedisSerializer<Object> valueSerializer(){
return new GenericJackson2JsonRedisSerializer();
}
@Bean
public CacheManager cacheManager(RedisConnectionFactory factory) {
RedisSerializer<String> redisSerializer = new StringRedisSerializer();
Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
//解决查询缓存转换异常的问题
ObjectMapper om = new ObjectMapper();
om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
jackson2JsonRedisSerializer.setObjectMapper(om);
// 配置序列化(解决乱码的问题),过期时间600秒
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
.entryTtl(Duration.ofSeconds(600))
.serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))
.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer))
.disableCachingNullValues();
RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
.cacheDefaults(config)
.build();
return cacheManager;
}
}
/**
* 2、后端实现房源的发布,要同时保存的数据库和ES中
*
* @param houseinfo
* @return
*/
@Cacheable(value = "myhouse")//是我
@Override
public Houseinfo insertData(Houseinfo houseinfo) {
HouseinfoVO houseinfoVO = new HouseinfoVO();
boolean save1 = this.save(houseinfo);
BeanUtil.copyProperties(houseinfo, houseinfoVO);
Housetype housetype = housetypeService.getById(houseinfo.getTypeId());
houseinfoVO.setTypeName(housetype.getTypeName());
template.convertAndSend("elasticsearch",houseinfoVO);
return houseinfo;
}
缓存穿透
缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中,将去查询数据库,但是数据库也无此记录,并且处于容错考虑,我们没有将这次查询的null写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
解决:空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
缓存雪崩
缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。
解决:原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
缓存击穿
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:如果这个key在大量请求同时进来前正好失效,那么所有对这个key的数据查询都落到db,我们称为缓存击穿。和缓存雪崩的区别:击穿是一个热点key失效,雪崩是很多key集体失效
的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:如果这个key在大量请求同时进来前正好失效,那么所有对这个key的数据查询都落到db,我们称为缓存击穿。和缓存雪崩的区别:击穿是一个热点key失效,雪崩是很多key集体失效
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo0.com 版权所有 湘ICP备2023021991号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务